diff --git a/h2o-algos/src/test/java/hex/adaboost/AdaBoostTest.java b/h2o-algos/src/test/java/hex/adaboost/AdaBoostTest.java index 65de33ee8830..9258b84caf8d 100644 --- a/h2o-algos/src/test/java/hex/adaboost/AdaBoostTest.java +++ b/h2o-algos/src/test/java/hex/adaboost/AdaBoostTest.java @@ -2,10 +2,9 @@ import hex.Model; import hex.genmodel.algos.tree.SharedTreeSubgraph; -import hex.glm.GLM; -import hex.glm.GLMModel; import hex.tree.drf.DRFModel; -import org.apache.commons.io.FileUtils; +import hex.tree.gbm.GBM; +import hex.tree.gbm.GBMModel; import org.junit.Before; import org.junit.Rule; import org.junit.Test; @@ -22,7 +21,6 @@ import water.util.FrameUtils; import java.io.File; -import java.io.IOException; import java.util.Arrays; import static org.junit.Assert.*; @@ -102,30 +100,7 @@ public void testBasicTrainGLM() { } finally { Scope.exit(); } - } - - @Test - public void testBasicTrainGLMWeakLerner() { - try { - Scope.enter(); - Frame train = Scope.track(parseTestFile("smalldata/prostate/prostate.csv")); - String response = "CAPSULE"; - train.toCategoricalCol(response); - GLMModel.GLMParameters p = new GLMModel.GLMParameters(); - p._train = train._key; - p._seed = 0xDECAF; - p._response_column = response; - - GLM adaBoost = new GLM(p); - GLMModel adaBoostModel = adaBoost.trainModel().get(); - Scope.track_generic(adaBoostModel); - assertNotNull(adaBoostModel); - Frame score = adaBoostModel.score(train); - Scope.track(score); - } finally { - Scope.exit(); - } - } + } @Test public void testBasicTrainLarge() { @@ -467,7 +442,6 @@ public void testBasicTrainAndScoreGLM() { try { Scope.enter(); Frame train = Scope.track(parseTestFile("smalldata/prostate/prostate.csv")); - Frame test = Scope.track(parseTestFile("smalldata/prostate/prostate.csv")); String response = "CAPSULE"; train.toCategoricalCol(response); AdaBoostModel.AdaBoostParameters p = new AdaBoostModel.AdaBoostParameters(); @@ -482,7 +456,7 @@ public void testBasicTrainAndScoreGLM() { Scope.track_generic(adaBoostModel); assertNotNull(adaBoostModel); - Frame score = adaBoostModel.score(test); + Frame score = adaBoostModel.score(train); Scope.track(score); } finally { Scope.exit(); @@ -494,7 +468,6 @@ public void testBasicTrainAndScoreGBM() { try { Scope.enter(); Frame train = Scope.track(parseTestFile("smalldata/prostate/prostate.csv")); - Frame test = Scope.track(parseTestFile("smalldata/prostate/prostate.csv")); String response = "CAPSULE"; train.toCategoricalCol(response); AdaBoostModel.AdaBoostParameters p = new AdaBoostModel.AdaBoostParameters(); @@ -509,7 +482,7 @@ public void testBasicTrainAndScoreGBM() { Scope.track_generic(adaBoostModel); assertNotNull(adaBoostModel); - Frame score = adaBoostModel.score(test); + Frame score = adaBoostModel.score(train); Scope.track(score); } finally { Scope.exit();