-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgsdnf_ppi.py
149 lines (131 loc) · 5.29 KB
/
gsdnf_ppi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os.path as osp
import torch
import torch.nn.functional as F
from torch_geometric.datasets import PPI
from torch_geometric.data import DataLoader
from src import GSDNFConv
from sklearn.metrics import f1_score
import numpy as np
import scipy.sparse as sp
import argparse
import time
class Net(torch.nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_num=256,
alpha=0.6,
K=4):
super(Net, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_num = hidden_num
self.alpha = alpha
self.K = K
self.conv1 = GSDNFConv(self.in_channels, self.hidden_num, self.alpha, self.K)
self.conv2 = GSDNFConv(self.hidden_num, self.hidden_num, self.alpha, self.K)
self.conv3 = GSDNFConv(self.hidden_num, self.out_channels, self.alpha, self.K)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = self.conv3(x, edge_index)
return x
def train(model, optimizer, train_loader, loss_op, device):
model.train()
total_loss = 0
for data in train_loader:
num_graphs = data.num_graphs
data.batch = None
data = data.to(device)
optimizer.zero_grad()
loss = loss_op(model(data.x, data.edge_index), data.y)
total_loss += loss.item() * num_graphs
loss.backward()
optimizer.step()
return total_loss / len(train_loader.dataset)
def test(model, loader, device):
model.eval()
ys, preds = [], []
for data in loader:
ys.append(data.y)
with torch.no_grad():
out = model(data.x.to(device), data.edge_index.to(device))
preds.append((out > 0).float().cpu())
y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
return f1_score(y, pred, average='micro') if pred.sum() > 0 else 0
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input',
type=str,
default='ppi',
help='Input graph.')
parser.add_argument('--epochs',
type=int,
default=200,
help='Number of epochs to train.')
parser.add_argument('--lr',
type=float,
default=0.02,
help='Initial learning rate.')
parser.add_argument('--weight_decay',
type=float,
default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden_num',
type=int,
default=256,
help='Number of hidden units.')
parser.add_argument('--heads',
type=int,
default=4,
help='Number of attention heads.')
parser.add_argument('--dropout',
type=float,
default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--concat',
type=bool,
default=False,
help='Concating all heads or not.')
parser.add_argument('--alpha',
type=float,
default=0.6,
help='a trade-off between feature smoothness and noise')
parser.add_argument('--K',
type=int,
default=4,
help='the order of Taylor Series Expansion')
args = parser.parse_args()
return args
def main(args):
print('-----------gsdnf ppi alpha %s-----------' % (args.alpha))
## loading data
dataset = args.input
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'PPI')
train_dataset = PPI(path, split='train')
val_dataset = PPI(path, split='val')
test_dataset = PPI(path, split='test')
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=2, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(in_channels=train_dataset.num_features,
out_channels=train_dataset.num_classes,
hidden_num=args.hidden_num,
alpha=args.alpha,
K=args.K).to(device)
loss_op = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
t1 = time.time()
for epoch in range(1, args.epochs + 1):
loss = train(model, optimizer, train_loader, loss_op, device)
val_f1 = test(model, val_loader, device)
test_f1 = test(model, test_loader, device)
print('Epoch: {:02d}, Loss: {:.4f}, Val: {:.4f}, Test: {:.4f}'.format(
epoch, loss, val_f1, test_f1))
print('Epoch: {:02d}, Loss: {:.4f}, Val: {:.4f}, Test: {:.4f}'.format(
epoch, loss, val_f1, test_f1))
t2 = time.time()
print('training time is: {}'.format(t2-t1))
if __name__ == '__main__':
main(get_args())