-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdense_gsdnef_noise.py
267 lines (234 loc) · 10.3 KB
/
dense_gsdnef_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os.path as osp
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid, CoraFull, Amazon, Coauthor, Reddit
import torch_geometric.transforms as T
from src import DenseGSDNEFConv
import numpy as np
import argparse
import time
np.random.seed(2020)
class Net(torch.nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_num,
alpha,
K):
super(Net, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_num = hidden_num
self.alpha = alpha
self.K = K
self.conv1 = DenseGSDNEFConv(self.in_channels, self.hidden_num, self.alpha, self.K)
self.conv2 = DenseGSDNEFConv(self.hidden_num, self.out_channels, self.alpha, self.K)
def forward(self, x, adj):
x = F.dropout(x, training=self.training)
x = self.conv1(x, adj)
x = F.dropout(x, training=self.training)
x = self.conv2(x, adj)
return F.log_softmax(x, dim=1)
def train(model, optimizer, data, x, adj):
model.train()
optimizer.zero_grad()
F.nll_loss(model(x, adj)[data.train_mask], data.y[data.train_mask]).backward()
optimizer.step()
def test(model, data, x, adj):
model.eval()
logits, accs = model(x, adj), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input',
type=str,
default='Cora',
# default='CiteSeer',
# default='Pubmed',
help='Input graph.')
parser.add_argument('--alpha',
type=float,
default=0.6,
help='a trade-off between feature smoothness and noise')
parser.add_argument('--K',
type=int,
default=4,
help='the order of Taylor Series Expansion')
parser.add_argument('--epochs',
type=int,
default=200,
help='Number of epochs to train.')
parser.add_argument('--lr',
type=float,
default=0.02,
help='Initial learning rate.')
parser.add_argument('--weight_decay',
type=float,
default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden_num',
type=int,
default=16,
help='Number of hidden units.')
parser.add_argument('--dropout',
type=float,
default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--noise',
type=bool,
default=True,
help='Data contains noise or not.')
parser.add_argument('--sigma',
type=float,
default=0,
help='The std of feature noise.')
parser.add_argument('--ratio',
type=float,
default=0,
help='The ratio of edge noise.')
args = parser.parse_args()
return args
def generate_split(data, num_classes, seed=2020, train_num_per_c=20, val_num_per_c=30):
torch.manual_seed(seed)
train_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
val_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
test_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
for c in range(num_classes):
all_c_idx = (data.y == c).nonzero()
if all_c_idx.size(0) <= train_num_per_c + val_num_per_c:
test_mask[all_c_idx] = True
continue
perm = torch.randperm(all_c_idx.size(0))
c_train_idx = all_c_idx[perm[:train_num_per_c]]
train_mask[c_train_idx] = True
test_mask[c_train_idx] = True
c_val_idx = all_c_idx[perm[train_num_per_c : train_num_per_c + val_num_per_c]]
val_mask[c_val_idx] = True
test_mask[c_val_idx] = True
test_mask = ~test_mask
return train_mask, val_mask, test_mask
# def load_data(args):
# dataset = args.input
# path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
# dataset = Planetoid(path, dataset, T.NormalizeFeatures())
# data = dataset[0]
# ## Generate feature noise and edge noise
# [m, n] = np.shape(data.x)
# if args.noise:
# ## Generate feature noise
# x_noisy = data.x + torch.Tensor(np.random.normal(0, args.sigma, (m, n)))
# ## Generate edge noise
# row, col = data.edge_index
# added_row, added_col = torch.randint(m, (2, int(m * args.ratio)), dtype=torch.long)
# # Find duplicated edges ...
# idx = torch.cat([m * row + col, m * added_row + added_col], dim=0)
# _, inv, count = torch.unique(idx, return_inverse=True, return_counts=True)
# keep_mask = count[inv][:row.size(0)] == 1
# added_mask = count[inv][row.size(0):] == 1
# keep_edge_index = torch.stack([row[keep_mask], col[keep_mask]], dim=0)
# added_edge_index = torch.stack([added_row[added_mask], added_col[added_mask]], dim=0)
# edge_noisy = torch.cat([keep_edge_index, added_edge_index], dim=-1)
# adj_noisy = torch.zeros((data.x.size(0), data.x.size(0)))
# col, row = edge_noisy
# adj_noisy[col, row] = 1
# else:
# x_noisy = data.x
# adj_noisy = torch.zeros((data.x.size(0), data.x.size(0)))
# col, row = data.edge_index
# adj_noisy[col, row] = 1
# return dataset, data, x_noisy, adj_noisy
def load_data(args):
dataset = args.input
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
if dataset in ['cora', 'citeseer', 'pubmed']:
dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
num_features = dataset.num_features
num_classes = dataset.num_classes
data = dataset[0]
return data, num_features, num_classes
elif dataset == 'corafull':
dataset = CoraFull(path)
elif dataset in ['cs', 'physics']:
dataset = Coauthor(path, name=dataset)
elif dataset in ['computers', 'photo']:
dataset = Amazon(path, name=dataset)
elif dataset == 'reddit':
dataset = Reddit(path)
num_features = dataset.num_features
num_classes = dataset.num_classes
data = dataset[0]
return data, num_features, num_classes
num_features = dataset.num_features
num_classes = dataset.num_classes
data = dataset[0]
data.train_mask, data.val_mask, data.test_mask = generate_split(data, num_classes)
return data, num_features, num_classes
def generate_noise(args, data):
## Generate feature noise and edge noise
[m, n] = np.shape(data.x)
if args.noise:
## Generate feature noise
x_noisy = data.x + torch.Tensor(np.random.normal(0, args.sigma, (m, n)))
## Generate edge noise
row, col = data.edge_index
added_row, added_col = torch.randint(m, (2, int(m * args.ratio)), dtype=torch.long)
# Find duplicated edges ...
idx = torch.cat([m * row + col, m * added_row + added_col], dim=0)
_, inv, count = torch.unique(idx, return_inverse=True, return_counts=True)
keep_mask = count[inv][:row.size(0)] == 1
added_mask = count[inv][row.size(0):] == 1
keep_edge_index = torch.stack([row[keep_mask], col[keep_mask]], dim=0)
added_edge_index = torch.stack([added_row[added_mask], added_col[added_mask]], dim=0)
edge_noisy = torch.cat([keep_edge_index, added_edge_index], dim=-1)
adj_noisy = torch.zeros((data.x.size(0), data.x.size(0)))
col, row = edge_noisy
adj_noisy[col, row] = 1
else:
x_noisy = data.x
adj_noisy = torch.zeros((data.x.size(0), data.x.size(0)))
col, row = data.edge_index
adj_noisy[col, row] = 1
return data, x_noisy, adj_noisy
def run_model(model, args, data, x_noisy, adj_noisy, learning_rate):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
data = data.to(device)
x_noisy = x_noisy.to(device)
adj_noisy = adj_noisy.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=args.weight_decay)
best_val_acc = test_acc = 0
t1 = time.time()
for epoch in range(1, args.epochs):
train(model, optimizer, data, x_noisy, adj_noisy)
train_acc, val_acc, tmp_test_acc = test(model, data, x_noisy, adj_noisy)
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
# log = 'Epoch: {:03d}, Train: {:.4f}, Val: {:.4f}, Test: {:.4f}'
# print(log.format(epoch, train_acc, best_val_acc, test_acc))
t2 = time.time()
print('{:.4f}'.format(test_acc))
# print('training time is: {}'.format(t2-t1))
def main(args):
data, num_features, num_classes = load_data(args)
data, x_noisy, adj_noisy = generate_noise(args, data)
print('---------------dense gsdnef dataset %s alpha: %s K: %s sigma: %s ratio: %s----------------' % (args.input, args.alpha, args.K, args.sigma, args.ratio))
gsdnef_model = Net(in_channels=num_features,
out_channels=num_classes,
hidden_num=args.hidden_num,
alpha=args.alpha,
K=args.K)
run_model(gsdnef_model, args, data, x_noisy, adj_noisy, 0.02)
print('---------------dense gsdnef dataset %s alpha: 1.2 K: %s sigma: %s ratio: %s----------------' % (args.input, args.K, args.sigma, args.ratio))
gsdnef_model = Net(in_channels=num_features,
out_channels=num_classes,
hidden_num=args.hidden_num,
alpha=1.2,
K=args.K)
run_model(gsdnef_model, args, data, x_noisy, adj_noisy, 0.02)
if __name__ == '__main__':
main(get_args())