-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhelpers.py
176 lines (124 loc) · 5.75 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from numpy_ringbuffer import RingBuffer
import numpy as np
import cv2
def crop_from_points(img, corners, make_square=True):
cnt = np.array([
corners[0],
corners[1],
corners[2],
corners[3]
])
rect = cv2.minAreaRect(cnt)
center, size, theta = rect
# Angle correction
if theta < -45:
theta += 90
rect = (center, size, theta)
box = cv2.boxPoints(rect)
box = np.int0(box)
# cv2.drawContours(img, [box], 0, (0, 0, 255), 2)
# get width and height of the detected rectangle
width = int(rect[1][0])
height = int(rect[1][1])
src_pts = np.float32([corners[0],corners[1],corners[2],corners[3]])
dst_pts = np.float32([[0,0],[width,0],[0,height],[width,height]])
# the perspective transformation matrix
M = cv2.getPerspectiveTransform(src_pts, dst_pts)
# directly warp the rotated rectangle to get the straightened rectangle
warped = cv2.warpPerspective(img, M, (width, height))
# Making it square so the numbers are more readable:
if make_square is True:
try:
warped = cv2.resize(warped, (max(width, height), max(width, height)), interpolation=cv2.INTER_CUBIC)
except Exception as e:
print(e)
transformation_data = {
'matrix' : M,
'original_shape': (height, width)
}
return warped, transformation_data
def perspective_transform(img, transformation_matrix, original_shape=None):
warped = img
if original_shape is not None:
if original_shape[0]>0 and original_shape[1]>0:
warped = cv2.resize(warped, (original_shape[1], original_shape[0]), interpolation=cv2.INTER_CUBIC)
white_image = np.zeros((640, 480, 3), np.uint8)
white_image[:,:,:] = 255
# warped = cv2.warpPerspective(warped, transformation_matrix, (640, 480), borderMode=cv2.BORDER_TRANSPARENT)
warped = cv2.warpPerspective(warped, transformation_matrix, (640, 480))
return warped
def blend_non_transparent(face_img, overlay_img):
# Let's find a mask covering all the non-black (foreground) pixels
# NB: We need to do this on grayscale version of the image
gray_overlay = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY)
overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1]
# Let's shrink and blur it a little to make the transitions smoother...
overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
overlay_mask = cv2.blur(overlay_mask, (3, 3))
# And the inverse mask, that covers all the black (background) pixels
background_mask = 255 - overlay_mask
# Turn the masks into three channel, so we can use them as weights
overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR)
background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR)
# Create a masked out face image, and masked out overlay
# We convert the images to floating point in range 0.0 - 1.0
face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0))
overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0))
# And finally just add them together, and rescale it back to an 8bit integer image
return np.uint8(cv2.addWeighted(face_part, 255.0, overlay_part, 255.0, 0.0))
def crop_minAreaRect(src, rect):
# Get center, size, and angle from rect
center, size, theta = rect
# Angle correction
if theta < -45:
theta += 90
# Convert to int
center, size = tuple(map(int, center)), tuple(map(int, size))
# Get rotation matrix for rectangle
M = cv2.getRotationMatrix2D( center, theta, 1)
# Perform rotation on src image
dst = cv2.warpAffine(src, M, (src.shape[1], src.shape[0]))
out = cv2.getRectSubPix(dst, size, center)
return out
def resize_to_square(image, goal_dimension=28, border=2):
height, width = image.shape[0], image.shape[1]
smol = max(height, width)
proportion = goal_dimension/smol
BLACK = [0, 0, 0]
constant = cv2.copyMakeBorder(image, border, border, border, border, cv2.BORDER_CONSTANT, value=BLACK)
background = np.zeros((goal_dimension, goal_dimension), dtype=np.int)
resized = cv2.resize(constant, (int(round(width*proportion)), int(round(height*proportion))), interpolation=cv2.INTER_AREA)
x_offset=(goal_dimension-resized.shape[1])//2
y_offset=(goal_dimension-resized.shape[0])//2
background[y_offset:y_offset+resized.shape[0], x_offset:x_offset+resized.shape[1]] = resized
final = background
return np.uint8(final)
class Singleton:
"""
A non-thread-safe helper class to ease implementing singletons.
This should be used as a decorator -- not a metaclass -- to the
class that should be a singleton.
The decorated class can define one `__init__` function that
takes only the `self` argument. Also, the decorated class cannot be
inherited from. Other than that, there are no restrictions that apply
to the decorated class.
To get the singleton instance, use the `instance` method. Trying
to use `__call__` will result in a `TypeError` being raised.
"""
def __init__(self, decorated):
self._decorated = decorated
def instance(self):
"""
Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned.
"""
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance
def __call__(self):
raise TypeError('Singletons must be accessed through `instance()`.')
def __instancecheck__(self, inst):
return isinstance(inst, self._decorated)