Skip to content

Commit 47f7592

Browse files
committed
Small changes to gitignore and README
1 parent b4b52e9 commit 47f7592

File tree

3 files changed

+13
-9
lines changed

3 files changed

+13
-9
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,7 @@
2525
/src/notebook_examples/pretrained_models/**
2626
/src/notebook_examples/wav2vec2_checkpoints/**
2727

28+
.vscode/
2829

2930

3031
### JetBrains template

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,24 +1,24 @@
1-
# vanpy
2-
**vanpy** is a Voice Analysis framework, built in a
1+
# VANPY
2+
**VANPY** is a Voice Analysis framework, built in a
33
flexible manner for easy extendability, that allows to extract and classify voice segments.
44

5-
![vanpy](https://user-images.githubusercontent.com/1709151/176196445-d80903ec-295f-4bc2-8a82-7f25f9f8dfc1.PNG)
5+
![VANPY](https://user-images.githubusercontent.com/1709151/176196445-d80903ec-295f-4bc2-8a82-7f25f9f8dfc1.PNG)
66

77
## Examples
88
You can use the following google colab notebook to inspect the capabilities of the library
99

10-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/griko/vanpy/blob/main/examples/vanpy_example.ipynb)
10+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/griko/VANPY/blob/main/examples/VANPY_example.ipynb)
1111

12-
Voice emotion classification model training and evaluation on RAVDESS dataset using **vanpy**
12+
Voice emotion classification model training and evaluation on RAVDESS dataset using **VANPY**
1313

14-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/griko/vanpy/blob/main/examples/using_vanpy_to_classify_emotions_on_RAVDESS_dataset.ipynb)
14+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/griko/VANPY/blob/main/examples/using_VANPY_to_classify_emotions_on_RAVDESS_dataset.ipynb)
1515

1616
Expending the library with a new classifier
1717

1818
*TODO*
1919

2020
## Description
21-
**vanpy** can be useful in multiple ways. It contains of 3 optional pipelines, that make preprocessing, feature
21+
**VANPY** can be useful in multiple ways. It contains of 3 optional pipelines, that make preprocessing, feature
2222
extraction and classification/STT of a voice segments an easy task:
2323

2424
1. The preprocessing pipline deals with audio files format and voice segment cutting.

src/run.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,8 +72,11 @@ def main():
7272

7373

7474
# pipeline = Pipeline(['file_mapper', 'pyannote_sd', 'speechbrain_embedding', 'openai_whisper_stt'], config=config)
75-
pipeline = Pipeline(['file_mapper', 'pyannote_sd', 'librosa_features_extractor', 'speechbrain_embedding', 'vanpy_gender', 'vanpy_age', 'vanpy_height', 'vanpy_emotion'], config=config)
76-
75+
# pipeline = Pipeline(['file_mapper', 'pyannote_sd', 'librosa_features_extractor', 'speechbrain_embedding', 'vanpy_gender', 'vanpy_age', 'vanpy_height', 'vanpy_emotion'], config=config)
76+
pipeline = Pipeline(['file_mapper', 'pyannote_vad', 'speechbrain_embedding', 'openai_whisper_stt', 'speech_brain_iemocap_emotion',
77+
'wav2vec2adv', 'yamnet_classifier', 'cosine_distance_diarization', 'agglomerative_clustering_diarization', 'gmm_clustering_diarization'], config=config)
78+
pipeline = Pipeline(['file_mapper', 'metricgan_se', 'ina_speech_segmenter', 'sepformer_se', 'wav2vec2stt',
79+
'wav2vec2adv', 'yamnet_classifier'], config=config)
7780

7881
# pipeline = Pipeline(['file_mapper', 'speechbrain_embedding', 'vanpy_ravdess_emotion'], config=config)
7982
# 'wav_converter', 'metricgan_se',, 'silero_vad', 'speechbrain_embedding', 'cosine_distance_diarization' , 'pyannote_sd', 'openai_whisper_stt'

0 commit comments

Comments
 (0)