|
| 1 | +% PROBABILITY DISTRIBUTION FUNCTIONS (contents of the dist-folder): |
| 2 | +% |
| 3 | +% probability density functions |
| 4 | +% BETA_LPDF - Beta log-probability density function (lpdf). |
| 5 | +% BETA_PDF - Beta probability density function (pdf). |
| 6 | +% DIR_LPDF - Log probability density function of uniform Dirichlet |
| 7 | +% distribution |
| 8 | +% DIR_PDF - Probability density function of uniform Dirichlet |
| 9 | +% distribution |
| 10 | +% GAM_CDF - Cumulative of Gamma probability density function (cdf). |
| 11 | +% GAM_LPDF - Log of Gamma probability density function (lpdf). |
| 12 | +% GAM_PDF - Gamma probability density function (pdf). |
| 13 | +% INVGAM_LPDF - Inverse-Gamma log probability density function. |
| 14 | +% INVGAM_PDF - Inverse-Gamma probability density function. |
| 15 | +% LAPLACE_LPDF - Laplace log-probability density function (lpdf). |
| 16 | +% LAPLACE_PDF - Laplace probability density function (pdf). |
| 17 | +% LOGN_LPDF - Log normal log-probability density function (lpdf) |
| 18 | +% LOGT_LPDF - Log probability density function (lpdf) for log Student's T |
| 19 | +% MNORM_LPDF - Multivariate-Normal log-probability density function (lpdf). |
| 20 | +% MNORM_PDF - Multivariate-Normal log-probability density function (lpdf). |
| 21 | +% KERNELP - Kernel density estimator for one dimensional distribution. |
| 22 | +% NORM_LPDF - Normal log-probability density function (lpdf). |
| 23 | +% NORM_PDF - Normal probability density function (pdf). |
| 24 | +% POISS_LPDF - Poisson log-probability density function. |
| 25 | +% POISS_PDF - Poisson probability density function. |
| 26 | +% SINVCHI2_LPDF - Scaled inverse-chi log-probability density function. |
| 27 | +% SINVCHI2_PDF - Scaled inverse-chi probability density function. |
| 28 | +% T_LPDF - Student's T log-probability density function (lpdf) |
| 29 | +% T_PDF - Student's T probability density function (pdf) |
| 30 | +% NORM_P - create Gaussian (multivariate) (hierarchical) prior |
| 31 | +% INVGAM_P - Create inverse-Gamma prior |
| 32 | +% |
| 33 | +% Error and gradient functions: |
| 34 | +% INVGAM_E - compute an error term for a parameter with inverse |
| 35 | +% gamma distribution (single parameter). |
| 36 | +% INVGAM_G - compute a gradient term for a parameter with inverse |
| 37 | +% gamma distribution (single parameter). |
| 38 | +% LAPLACE_E - compute an error term for a parameter with Laplace |
| 39 | +% distribution (single parameter). |
| 40 | +% LAPLACE_G - compute a gradient for a parameter with Laplace |
| 41 | +% distribution (single parameter). |
| 42 | +% MNORM_E - compute an error term for parameters with normal |
| 43 | +% distribution (multiple parameters). |
| 44 | +% MNORM_G - compute a gradient for parameters with normal |
| 45 | +% distribution (multible parameters) |
| 46 | +% MNORM_S - Maximum log likelihood second derivatives |
| 47 | +% NORM_E - compute an error term for a parameter with normal |
| 48 | +% distribution (single parameter). |
| 49 | +% NORM_G - compute a gradient for a parameter with normal |
| 50 | +% distribution (single parameter). |
| 51 | +% NORM_S - Maximum log likelihood second derivatives (single variable) |
| 52 | +% T_E - compute an error term for a parameter with Student's |
| 53 | +% t-distribution (single parameter). |
| 54 | +% T_G - compute a gradient for a parameter with Student's |
| 55 | +% t-distribution (single parameter). |
| 56 | +% DIR_E - compute an error term for a parameter with Dirichlet |
| 57 | +% distribution (single parameter). |
| 58 | +% GINVGAM_E - Compute an error term for a parameter with inverse |
| 59 | +% gamma distribution (single parameter). |
| 60 | +% GINVGAM_G - Compute a gradient term for a parameter with inverse |
| 61 | +% gamma distribution (single parameter). |
| 62 | +% GP2R_E - Evaluate error function for Gaussian Process. |
| 63 | +% GP2R_G - Evaluate gradient of error for Gaussian Process. |
| 64 | +% GNORM_E - Compute an error term for a parameter with normal |
| 65 | +% distribution (single parameter). |
| 66 | +% GNORM_G - Compute a gradient for a parameter with normal |
| 67 | +% distribution (single parameter). |
| 68 | +% GNORM_S - Maximum log likelihood second derivatives. |
| 69 | +% GT_E - Compute an error term for a parameter with Student's |
| 70 | +% t-distribution (single parameter). |
| 71 | +% GT_G - Compute a gradient for a parameter with Student's |
| 72 | +% t-distribution (single parameter). |
| 73 | +% GT_S - Maximum log likelihood second derivatives for |
| 74 | +% t-distribution. |
| 75 | +% T_S - Maximum log likelihood second derivatives for t-distribution |
| 76 | +% T_P - Create student t prior |
| 77 | +% |
| 78 | +% Functions to sample from full conditional distribution |
| 79 | +% COND_GINVGAM_CAT - Sample conditional distribution from |
| 80 | +% inverse gamma likelihood for a group and |
| 81 | +% categorical prior. |
| 82 | +% COND_GNORM_INVGAM - Sample conditional distribution from |
| 83 | +% normal likelihood for group and |
| 84 | +% inverse gamma prior. |
| 85 | +% COND_GNORM_NORM - Sample conditional distribution from normal |
| 86 | +% likelihood for a group and normal prior. |
| 87 | +% COND_GT_CAT - Sample conditional distribution from t |
| 88 | +% likelihood for a group and categorical prior. |
| 89 | +% COND_GT_INVGAM - Sample conditional distribution from t |
| 90 | +% likelihood for a group and inverse gamma prior. |
| 91 | +% COND_INVGAM_CAT - Sample conditional distribution from |
| 92 | +% inverse gamma likelihood and categorical prior. |
| 93 | +% COND_INVGAM_INVGAM - Sample conditional distribution from |
| 94 | +% inverse gamma likelihood and prior |
| 95 | +% COND_LAPLACE_INVGAM - Sample conditional distribution from Laplace |
| 96 | +% likelihood and inverse gamma prior. |
| 97 | +% COND_MNORM_INVWISH - Sample conditional distribution from normal |
| 98 | +% likelihood for multiparameter group and |
| 99 | +% inverse wishard prior. |
| 100 | +% COND_NORM_GINVGAM - Sample conditional distribution from |
| 101 | +% normal likelihood and inverse gamma prior |
| 102 | +% for a group |
| 103 | +% COND_NORM_INVGAM - Sample conditional distribution from |
| 104 | +% normal likelihood and inverse gamma prior |
| 105 | +% COND_T_CAT - Sample conditional distribution from t |
| 106 | +% likelihood and categorical prior. |
| 107 | +% COND_T_INVGAM - Sample conditional distribution from t |
| 108 | +% likelihood and inverse gamma prior. |
| 109 | +% |
| 110 | +% Random number generators |
| 111 | +% CATRAND - Random matrices from categorical distribution. |
| 112 | +% DIRRAND - Uniform dirichlet random vectors |
| 113 | +% EXPRAND - Random matrices from exponential distribution. |
| 114 | +% GAMRAND - Random matrices from gamma distribution. |
| 115 | +% INTRAND - Random matrices from uniform integer distribution. |
| 116 | +% INVGAMRAND - Random matrices from inverse gamma distribution |
| 117 | +% INVGAMRAND1 - Random matrices from inverse gamma distribution |
| 118 | +% INVWISHRND - Random matrices from inverse Wishart distribution. |
| 119 | +% NORMLTRAND - Random draws from a left-truncated normal |
| 120 | +% distribution, with mean = mu, variance = sigma2 |
| 121 | +% NORMRTRAND - Random draws from a right-truncated normal |
| 122 | +% distribution, with mean = mu, variance = sigma2 |
| 123 | +% NORMTRAND - Random draws from a normal truncated to interval |
| 124 | +% NORMTZRAND - Random draws from a normal distribution truncated by zero |
| 125 | +% WISHRND - Random matrices from Wishart distribution. |
| 126 | +% SINVCHI2RAND - Random matrices from scaled inverse-chi distribution |
| 127 | +% TRAND - Random numbers from Student's t-distribution |
| 128 | +% UNIFRAND - Generate unifrom random numberm from interval [A,B] |
0 commit comments