-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathContents.m
executable file
·99 lines (99 loc) · 5.82 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
% PROBABILITY DISTRIBUTION FUNCTIONS (in the dist-folder):
%
% Priors
% PRIOR_FIXED Fix parameter to its current value
% PRIOR_GAMMA Gamma prior structure
% PRIOR_GAUSSIAN Gaussian prior structure
% PRIOR_INVGAMMA Inverse-gamma prior structure
% PRIOR_INVT Inverse Student-t prior structure
% PRIOR_INVUNIF Inverse uniform prior structure
% PRIOR_LAPLACE Laplace (double exponential) prior structure
% PRIOR_LOGGAUSSIAN Log-Gaussian prior structure
% PRIOR_LOGLOGUNIF Uniform prior structure for the log(log(parameter))
% PRIOR_LOGT Student-t prior structure for the logarithm of the parameter
% PRIOR_LOGUNIF Uniform prior structure for the logarithm of the parameter
% PRIOR_SINVCHI2 Scaled inverse-chi-square prior structure
% PRIOR_SQINVGAMMA Gamma prior structure for square inverse of the parameter
% PRIOR_SQINVLOGUNIF Uniform prior structure for the log of the square
% inverse of parameter
% PRIOR_SQINVSINVCHI2 Scaled-Inv-Chi^2 prior structure for square inverse
% of the parameter
% PRIOR_SQINVUNIF Uniform prior structure for the square inverse of the
% parameter
% PRIOR_SQRTINVT Student-t prior structure for the square root of
% inverse of the parameter
% PRIOR_INVSQRTUNIF Uniform prior structure for the square root of
% inverse of the parameter
% PRIOR_SQRTT Student-t prior structure for the square root of the
% parameter
% PRIOR_SQRTUNIF Uniform prior structure for the square root of the
% parameter
% PRIOR_T Student-t prior structure
% PRIOR_UNIF Uniform prior structure
%
% Probability (log/cumulative) density functions
% BETA_CDF - Beta cumulative distribution function
% BETA_INV - Inverse of the beta cumulative distribution function (cdf)
% BETA_LPDF - Beta log-probability density function (lpdf)
% BETA_PDF - Beta probability density function (pdf)
% DIR_LPDF - Log probability density function of uniform Dirichlet
% distribution
% DIR_PDF - Probability density function of uniform Dirichlet
% distribution
% GAM_CDF - Cumulative of Gamma probability density function (cdf)
% GAM_LPDF - Log of Gamma probability density function (lpdf)
% GAM_PDF - Gamma probability density function (pdf)
% GEO_LPDF - Geometric log probability density function (lpdf)
% INVGAM_LPDF - Inverse-Gamma log probability density function
% INVGAM_PDF - Inverse-Gamma probability density function
% LAPLACE_LPDF - Laplace log-probability density function (lpdf)
% LAPLACE_PDF - Laplace probability density function (pdf)
% LOGN_LPDF - Log normal log-probability density function (lpdf)
% LOGT_LPDF - Log probability density function (lpdf) for log Student's T
% MNORM_LPDF - Multivariate-Normal log-probability density function (lpdf)
% MNORM_PDF - Multivariate-Normal log-probability density function (lpdf)
% NBIN_CDF - Negative binomial cumulative distribution function (cdf)
% NBIN_INV - Inverse of Negative binomial cumulative distribution function (inv)
% NBIN_PDF - Negative binomial probability density function (pdf)
% NEGBIN_LPDF - Negative binomial log probability density function
% NEGBIN_PDF - Negative binomial probability density function
% NEGBINZTR_LPDF - Zero trunc. negative binomial log probability density function
% NEGBINZTR_PDF - Zero trunc. negative binomial log probability density function
% NORM_CDF - Normal cumulative probability density function (cdf)
% NORM_INV - Inverse of the normal cumulative distribution function (cdf)
% NORM_LPDF - Normal log-probability density function (lpdf)
% NORM_PDF - Normal probability density function (pdf)
% POISS_LPDF - Poisson log-probability density function
% POISS_PDF - Poisson probability density function
% SINVCHI2_LPDF - Scaled inverse-chi log-probability density function
% SINVCHI2_PDF - Scaled inverse-chi probability density function
% T_CDF - Student's t cumulative distribution function (cdf)
% T_INV - Inverse of Student's T cumulative distribution function (cdf)
% T_LPDF - Student's T log-probability density function (lpdf)
% T_PDF - Student's T probability density function (pdf)
%
% Random numbers
% BETARAND - Random matrices from beta distribution
% CATRAND - Random matrices from categorical distribution
% DIRRAND - Uniform dirichlet random vectors
% EXPRAND - Random matrices from exponential distribution
% GAMRAND - Random matrices from gamma distribution
% GAMRAND1 - Random matrices from gamma distribution (mex)
% INTRAND - Random matrices from uniform integer distribution
% INVGAMRAND - Random matrices from inverse gamma distribution
% INVGAMRAND1 - Random matrices from inverse gamma distribution (mex)
% INVWISHRND - Random matrices from inverse Wishart distribution
% NORMLTRAND - Random draws from a left-truncated normal
% distribution, with mean = mu, variance = sigma2
% NORMRTRAND - Random draws from a right-truncated normal
% distribution, with mean = mu, variance = sigma2
% NORMTRAND - Random draws from a normal truncated to interval
% NORMTZRAND - Random draws from a normal distribution truncated by zero
% SINVCHI2RAND - Random matrices from scaled inverse-chi distribution
% TRAND - Random numbers from Student's t-distribution
% UNIFRAND - Generate unifrom random numberm from interval [A,B]
% WISHRND - Random matrices from Wishart distribution
%
% Others
% HAMMERSLEY - Hammersley quasi-random sequence
%