-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathpl_samplers_test.py
259 lines (236 loc) · 9.74 KB
/
pl_samplers_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for plackett_luce."""
from absl.testing import absltest
from absl.testing import parameterized
import jax
import jax.numpy as jnp
import numpy as np
from pl_samplers import GibbsSamplerPlackettLuce
class SamplersTest(parameterized.TestCase):
gibbs_samplers = {
jit_strategy: GibbsSamplerPlackettLuce(jit_strategy=jit_strategy)
for jit_strategy in ["jit_per_reader", "jit_per_iteration", "no_jit"]
}
def _get_test_gibbs_data(self):
lam = jnp.array([1.0, 0.2, 2.0, 0.1, 4.0, 0.3, 1.0, 2.0])
rankings_1 = jnp.array([2, 1, 0, 3, 4, 7, 6, 5])
rankings_2 = jnp.array([7, 1, 4, 3, 2, 0, 5, 6])
rankings = jnp.vstack((rankings_1, rankings_2))
selectors_1 = [[2, 1], [0], [3, 4, 7]]
selectors_2 = [[7], [1], [4, 3], [2]]
selectors = [selectors_1, selectors_2]
return rankings, selectors, lam
def test_sample_tau_given_lam_and_rankings(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
lam = jnp.array([1.0, 0.2, 2.0, 0.1])
rankings = jnp.array([2, 1, 0, 3])
key = jax.random.PRNGKey(0)
tau = gibbs_sampler._sample_tau_given_lam_and_rankings(key, lam, rankings)
np.testing.assert_array_almost_equal(rankings, jnp.argsort(tau))
def test_sample_perm_given_lam_and_partial_rankings(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
rankings, selectors, lam = self._get_test_gibbs_data()
key = jax.random.PRNGKey(0)
rankings_returned = (
gibbs_sampler._sample_perm_given_lam_and_partial_rankings(
key, rankings, selectors, lam
)
)
r1_returned, r2_returned = rankings_returned[0, :], rankings_returned[1, :]
self.assertCountEqual(jnp.array([1, 2]), r1_returned[:2])
self.assertEqual(0, r1_returned[2])
self.assertCountEqual(jnp.array([3, 4, 7]), r1_returned[3:6])
self.assertCountEqual(jnp.array([5, 6]), r1_returned[6:])
self.assertEqual(7, r2_returned[0])
self.assertEqual(1, r2_returned[1])
self.assertCountEqual(jnp.array([3, 4]), r2_returned[2:4])
self.assertEqual(2, r2_returned[4])
self.assertCountEqual(jnp.array([0, 5, 6]), r2_returned[5:])
@jax.threefry_partitionable(True)
def test_sample_from_block_posterior(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
phi = jnp.array([-1, 4.0, 3.0, 2.0])
logsumexp_phi = jax.nn.logsumexp(phi)
key = jax.random.PRNGKey(0)
selector = [0, 1, 3]
selector_returned = gibbs_sampler._sample_from_block_posterior(
key, phi, logsumexp_phi, selector
)
selector_expected = jnp.array([0, 1, 3])
np.testing.assert_array_almost_equal(selector_returned, selector_expected)
def test_get_denoms(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
lam = jnp.array([3.0, 2.0, 4.0])
phi = jnp.log(lam)
denoms_expected = jnp.log(jnp.array([3 + 2 + 4, 2 + 4, 4]))
var_get_denoms = jax.jit(gibbs_sampler._get_denoms)
denoms_returned = var_get_denoms(phi)
np.testing.assert_array_almost_equal(
denoms_expected, denoms_returned, decimal=5
)
def test_initialize_rankings(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
_, selectors, lam = self._get_test_gibbs_data()
num_classes = len(lam)
key = jax.random.PRNGKey(0)
rankings_returned = gibbs_sampler._initialize_rankings(
key, selectors, num_classes
)
r1_returned, r2_returned = rankings_returned[0, :], rankings_returned[1, :]
self.assertCountEqual(jnp.array([1, 2]), r1_returned[:2])
self.assertEqual(0, r1_returned[2])
self.assertCountEqual(jnp.array([3, 4, 7]), r1_returned[3:6])
self.assertCountEqual(jnp.array([5, 6]), r1_returned[6:])
self.assertEqual(7, r2_returned[0])
self.assertEqual(1, r2_returned[1])
self.assertCountEqual(jnp.array([3, 4]), r2_returned[2:4])
self.assertEqual(2, r2_returned[4])
self.assertCountEqual(jnp.array([0, 5, 6]), r2_returned[5:])
def test_sample_lam_given_tau(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
tau = jnp.array([[10.0, 0.1, 100.0, 15.0], [12.0, 0.2, 120.0, 16.0]])
shape_lam, rate_lam = jnp.ones((4,)), jnp.ones((4,))
lam = gibbs_sampler._sample_lam_given_tau(
jax.random.PRNGKey(0), tau, shape_lam, rate_lam
)
self.assertGreater(lam[1], lam[2])
@jax.threefry_partitionable(True)
def test_gibbs_sampler_pl_iteration(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
rankings, selectors, lam = self._get_test_gibbs_data()
key = jax.random.PRNGKey(0)
shape_lam, rate_lam = jnp.ones((8,)), jnp.ones((8,))
_, lam_returned, rank_returned = gibbs_sampler._gibbs_sampler_pl_iteration(
key, lam, rankings, selectors, shape_lam, rate_lam
)
for l in lam_returned:
self.assertGreater(l, 0)
for r in rank_returned.flatten():
self.assertGreaterEqual(r, 0)
r1_returned, r2_returned = rank_returned[0, :], rank_returned[1, :]
self.assertCountEqual(jnp.array([1, 2]), r1_returned[:2])
self.assertEqual(0, r1_returned[2])
self.assertCountEqual(jnp.array([3, 4, 7]), r1_returned[3:6])
self.assertCountEqual(jnp.array([5, 6]), r1_returned[6:])
self.assertEqual(7, r2_returned[0])
self.assertEqual(1, r2_returned[1])
self.assertCountEqual(jnp.array([3, 4]), r2_returned[2:4])
self.assertEqual(2, r2_returned[4])
self.assertCountEqual(jnp.array([0, 5, 6]), r2_returned[5:])
def test_sample_and_sample_from_unranked_classes(self):
gibbs_sampler = self.gibbs_samplers["jit_per_reader"]
selectors_1 = [[1, 2], [3, 4], [17]]
selectors_2 = [[1], [2, 3], [17]]
selectors = [selectors_1, selectors_2]
num_classes = 30
shape_lam = jnp.ones((num_classes,)) * (1 / num_classes)
rate_lam = jnp.ones((num_classes,))
key = jax.random.PRNGKey(0)
num_iterations = 10
num_warm_up_iterations = 5
results_sampler = gibbs_sampler.sample(
key, selectors, shape_lam, rate_lam, num_iterations
)
results_sampler_unranked_0 = gibbs_sampler.sample_from_ranked_classes(
key,
selectors,
1,
num_classes,
num_classes,
num_iterations=num_iterations,
represent_unranked_classes=False,
)
results_sampler_unranked_1_eq = gibbs_sampler.sample_from_ranked_classes(
key,
selectors,
1,
num_classes,
num_classes,
num_iterations=num_iterations,
represent_unranked_classes=True,
normalize_unranked_equally=True,
)
results_sampler_unranked_1_uneq = gibbs_sampler.sample_from_ranked_classes(
key,
selectors,
1,
num_classes,
num_classes,
num_iterations=num_iterations,
represent_unranked_classes=True,
normalize_unranked_equally=False,
)
self.assertEqual(
jnp.sum(results_sampler_unranked_0[:, jnp.array([5, 12, 29])]), 0
)
# Checking whether all unranked classes are assigned the same value.
values = np.concatenate(
[
results_sampler_unranked_1_eq[:, jnp.array([i])]
for i in range(num_classes)
if i not in jax.tree_util.tree_leaves(selectors)
]
)
np.testing.assert_array_almost_equal(
values - values[0, 0], np.zeros_like(values), decimal=3
)
for i in range(num_iterations):
self.assertNotEqual(
results_sampler_unranked_1_uneq[i, 10],
results_sampler_unranked_1_uneq[i, 20],
)
for results in [
results_sampler,
results_sampler_unranked_0,
results_sampler_unranked_1_eq,
results_sampler_unranked_1_uneq,
]:
np.testing.assert_array_equal(
results.shape, (num_iterations, num_classes)
)
avg_lambda = results[num_warm_up_iterations:].mean(axis=0)
# Higher ranked classes must have higher lambdas on average.
self.assertGreater(avg_lambda[1], avg_lambda[2])
self.assertGreater(avg_lambda[1], avg_lambda[3])
self.assertGreater(avg_lambda[1], avg_lambda[4])
self.assertGreater(avg_lambda[1], avg_lambda[17])
self.assertGreater(avg_lambda[2], avg_lambda[17])
for i in [1, 2, 3, 4]:
if i != 4:
for j in range(5, 30):
self.assertGreater(avg_lambda[i], avg_lambda[j], msg=f"{i}, {j}")
def test_gibbs_sampler_pl_nonnegative_nan(self):
selector = [[[33], [45]], [[33], [45, 20, 31]], [[33], [45]], [[33]]]
num_classes = 50
shape_lam = jnp.ones((num_classes,)) / num_classes
rate_lam = jnp.ones((num_classes,))
key = jax.random.PRNGKey(0)
num_iterations = 3
results = {}
jit_strategies = ["jit_per_reader", "jit_per_iteration", "no_jit"]
for jit_strategy in jit_strategies:
gibbs_sampler = self.gibbs_samplers[jit_strategy]
results[jit_strategy] = gibbs_sampler.sample(
key, selector, shape_lam, rate_lam, num_iterations=num_iterations
)
self.assertFalse(jnp.any(jnp.isnan(results[jit_strategy])))
self.assertTrue(jnp.all(results[jit_strategy] > 0))
for i in range(1, len(jit_strategies)):
np.testing.assert_array_almost_equal(
results[jit_strategies[i]], results[jit_strategies[i - 1]], decimal=4
)
if __name__ == "__main__":
absltest.main()