Skip to content

Commit 6c9ee3b

Browse files
authored
opencl: add conv2d kernel (#14403)
* add conv2d kernel * fix trailing whitespace * whitespace fixe * handle f16 input and f16 kernel, more opt * resolve conflicts * use enqueue_ndrange_kernel
1 parent cd465d8 commit 6c9ee3b

File tree

4 files changed

+497
-0
lines changed

4 files changed

+497
-0
lines changed

ggml/src/ggml-opencl/CMakeLists.txt

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -105,6 +105,8 @@ set(GGML_OPENCL_KERNELS
105105
pad
106106
repeat
107107
mul_mat_f16_f32
108+
conv2d
109+
conv2d_f16_f32
108110
)
109111

110112
foreach (K ${GGML_OPENCL_KERNELS})

ggml/src/ggml-opencl/ggml-opencl.cpp

Lines changed: 134 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -390,6 +390,9 @@ struct ggml_backend_opencl_context {
390390
cl_program program_tanh;
391391
cl_program program_upscale;
392392
cl_program program_concat;
393+
cl_program program_conv_2d_f16;
394+
cl_program program_conv_2d_f32;
395+
cl_program program_conv_2d_f16_f32;
393396
cl_program program_tsembd;
394397
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
395398

@@ -441,6 +444,9 @@ struct ggml_backend_opencl_context {
441444
cl_kernel kernel_upscale_bilinear;
442445
cl_kernel kernel_concat_f32_contiguous;
443446
cl_kernel kernel_concat_f32_non_contiguous;
447+
cl_kernel kernel_conv_2d_f16;
448+
cl_kernel kernel_conv_2d_f32;
449+
cl_kernel kernel_conv_2d_f16_f32;
444450
cl_kernel kernel_timestep_embedding;
445451
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
446452

@@ -1478,6 +1484,47 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
14781484
GGML_LOG_CONT(".");
14791485
}
14801486

1487+
// conv2d
1488+
{
1489+
#ifdef GGML_OPENCL_EMBED_KERNELS
1490+
const std::string kernel_src {
1491+
#include "conv2d.cl.h"
1492+
};
1493+
const std::string kernel_src_f16_f32 {
1494+
#include "conv2d_f16_f32.cl.h"
1495+
};
1496+
#else
1497+
const std::string kernel_src = read_file("conv2d.cl");
1498+
const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
1499+
#endif
1500+
if (!kernel_src.empty()) {
1501+
backend_ctx->program_conv_2d_f16 =
1502+
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
1503+
CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
1504+
GGML_LOG_CONT(".");
1505+
backend_ctx->program_conv_2d_f32 =
1506+
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
1507+
CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
1508+
GGML_LOG_CONT(".");
1509+
} else {
1510+
GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
1511+
backend_ctx->program_conv_2d_f16 = nullptr;
1512+
backend_ctx->kernel_conv_2d_f16 = nullptr;
1513+
backend_ctx->program_conv_2d_f32 = nullptr;
1514+
backend_ctx->kernel_conv_2d_f32 = nullptr;
1515+
}
1516+
if (!kernel_src_f16_f32.empty()) {
1517+
backend_ctx->program_conv_2d_f16_f32 =
1518+
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
1519+
CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
1520+
GGML_LOG_CONT(".");
1521+
} else {
1522+
GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
1523+
backend_ctx->program_conv_2d_f16_f32 = nullptr;
1524+
backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
1525+
}
1526+
}
1527+
14811528
// mul_mv_id_q4_0_f32_8x_flat
14821529
{
14831530
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2361,6 +2408,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
23612408
op->src[0]->ne[3] == 1 && op->ne[3] == 1;
23622409
case GGML_OP_UPSCALE:
23632410
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
2411+
case GGML_OP_CONV_2D:
2412+
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
2413+
(op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
2414+
(op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
23642415
case GGML_OP_CONCAT:
23652416
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
23662417
case GGML_OP_TIMESTEP_EMBEDDING:
@@ -4998,6 +5049,83 @@ static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_ten
49985049
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
49995050
}
50005051

5052+
static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
5053+
GGML_TENSOR_BINARY_OP_LOCALS;
5054+
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
5055+
5056+
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
5057+
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
5058+
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
5059+
5060+
cl_ulong offset0 = extra0->offset + src0->view_offs;
5061+
cl_ulong offset1 = extra1->offset + src1->view_offs;
5062+
cl_ulong offsetd = extrad->offset + dst->view_offs;
5063+
5064+
const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
5065+
const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
5066+
5067+
const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
5068+
const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
5069+
const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
5070+
5071+
const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
5072+
const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
5073+
const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
5074+
5075+
const int64_t NPQ = (int64_t)N * OW * OH;
5076+
5077+
const uint32_t BS_K = 64;
5078+
const uint32_t BS_NPQ = 64;
5079+
const uint32_t BS_CRS = 16;
5080+
const uint32_t VEC_SIZE = 4;
5081+
5082+
const uint32_t TS_K = 4;
5083+
const uint32_t TS_NPQ = 8;
5084+
5085+
const uint32_t WG_K = BS_K / TS_K;
5086+
const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
5087+
5088+
auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
5089+
const uint32_t NB_K = splitWork(Cout, BS_K);
5090+
const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
5091+
5092+
cl_kernel kernel;
5093+
size_t shmem_size;
5094+
5095+
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
5096+
kernel = backend_ctx->kernel_conv_2d_f16;
5097+
shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
5098+
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
5099+
kernel = backend_ctx->kernel_conv_2d_f32;
5100+
shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
5101+
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
5102+
kernel = backend_ctx->kernel_conv_2d_f16_f32;
5103+
shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
5104+
} else {
5105+
GGML_ASSERT(false && "Unsupported data type combination for conv2d");
5106+
return;
5107+
}
5108+
5109+
cl_uint idx = 0;
5110+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
5111+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
5112+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
5113+
CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
5114+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
5115+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
5116+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
5117+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
5118+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
5119+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
5120+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
5121+
CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
5122+
5123+
size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
5124+
size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
5125+
5126+
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
5127+
}
5128+
50015129
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
50025130
GGML_ASSERT(src0);
50035131
GGML_ASSERT(src0->extra);
@@ -6752,6 +6880,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
67526880
}
67536881
ggml_cl_upscale(backend, tensor->src[0], tensor);
67546882
return true;
6883+
case GGML_OP_CONV_2D:
6884+
if (!any_on_device) {
6885+
return false;
6886+
}
6887+
func = ggml_cl_conv_2d;
6888+
break;
67556889
case GGML_OP_CONCAT:
67566890
if (!any_on_device) {
67576891
return false;
Lines changed: 185 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,185 @@
1+
#ifdef USE_FP16
2+
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
3+
#define T_FLOAT half
4+
#define T_FLOAT4 half4
5+
#define VSTORE_T_FLOAT4(data, offset, p) vstore_half4_rte(data, offset, p)
6+
#else
7+
#define T_FLOAT float
8+
#define T_FLOAT4 float4
9+
#define VSTORE_T_FLOAT4(data, offset, p) vstore4(data, offset, p)
10+
#endif
11+
12+
#if defined(cl_qcom_reqd_sub_group_size)
13+
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
14+
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
15+
#else
16+
#define REQD_SUBGROUP_SIZE_128
17+
#endif
18+
19+
#define T_ACCUM float4
20+
#define VEC_SIZE 4
21+
22+
#define BS_K 64
23+
#define BS_NPQ 64
24+
#define BS_CRS 16
25+
26+
#define TS_K 4
27+
#define TS_NPQ 8
28+
29+
#define WG_K (BS_K / TS_K)
30+
#define WG_NPQ (BS_NPQ / TS_NPQ)
31+
32+
#define BS_NPQ_VEC (BS_NPQ / VEC_SIZE)
33+
#define TS_NPQ_VEC (TS_NPQ / VEC_SIZE)
34+
35+
static inline uint splitWork(uint work_size, uint block_size){
36+
return (work_size + block_size - 1) / block_size;
37+
}
38+
39+
REQD_SUBGROUP_SIZE_128
40+
kernel void kernel_conv_2d(
41+
global void* p_knl,
42+
ulong off_knl,
43+
global void* p_src,
44+
ulong off_src,
45+
global void* p_dst,
46+
ulong off_dst,
47+
local void* shared,
48+
uint Cout, uint Cin, uint N,
49+
uint KW, uint KH, uint W, uint H, uint OW, uint OH,
50+
uint s0, uint s1, uint p0, uint p1, uint d0, uint d1,
51+
uint nb01, uint nb02, uint nb03,
52+
uint nb11, uint nb12, uint nb13,
53+
uint nb1, uint nb2, uint nb3
54+
) {
55+
global T_FLOAT* knl_data = (global T_FLOAT*) ((global char*)p_knl + off_knl);
56+
global T_FLOAT* src_data = (global T_FLOAT*) ((global char*)p_src + off_src);
57+
global T_FLOAT* dst_data = (global T_FLOAT*) ((global char*)p_dst + off_dst);
58+
59+
const uint K = Cout;
60+
const uint CRS = Cin*KH*KW;
61+
const uint NPQ = N*OH*OW;
62+
63+
const uint lid_k = get_local_id(0);
64+
const uint lid_npq = get_local_id(1);
65+
const uint tid = lid_npq * WG_K + lid_k;
66+
67+
const uint B_idx_K = get_group_id(0);
68+
const uint B_idx_NPQ = get_group_id(1);
69+
70+
const uint offset_k = B_idx_K * BS_K;
71+
const uint offset_npq = B_idx_NPQ * BS_NPQ;
72+
73+
local T_FLOAT* Ash = (local T_FLOAT*)shared;
74+
local T_FLOAT4* Bsh = (local T_FLOAT4*) &Ash[BS_K * BS_CRS];
75+
76+
T_ACCUM regC[TS_K][TS_NPQ_VEC];
77+
for (int i = 0; i < TS_K; ++i) {
78+
for (int j = 0; j < TS_NPQ_VEC; ++j) {
79+
regC[i][j] = (T_ACCUM)(0.0f);
80+
}
81+
}
82+
83+
const uint NB_CRS = splitWork(CRS, BS_CRS);
84+
85+
for (uint B_idx_CRS = 0; B_idx_CRS < NB_CRS; ++B_idx_CRS) {
86+
const uint offset_crs = B_idx_CRS * BS_CRS;
87+
88+
for (int i = tid; i < BS_K * BS_CRS; i += (WG_K * WG_NPQ)) {
89+
const uint k_l = i / BS_CRS;
90+
const uint crs_l = i % BS_CRS;
91+
const uint k_g = offset_k + k_l;
92+
const uint crs_g = offset_crs + crs_l;
93+
94+
if (k_g < K && crs_g < CRS) {
95+
const uint Cin_idx = crs_g / (KW*KH);
96+
const uint KH_idx = (crs_g - Cin_idx*KW*KH) / KW;
97+
const uint KW_idx = crs_g - Cin_idx*KW*KH - KH_idx*KW;
98+
const uint knl_idx = KW_idx + KH_idx*nb01 + Cin_idx*nb02 + k_g*nb03;
99+
Ash[k_l * BS_CRS + crs_l] = knl_data[knl_idx];
100+
} else {
101+
Ash[k_l * BS_CRS + crs_l] = (T_FLOAT)0.0f;
102+
}
103+
}
104+
105+
for (int i = tid; i < BS_CRS * BS_NPQ_VEC; i += (WG_K * WG_NPQ)) {
106+
const uint crs_l = i / BS_NPQ_VEC;
107+
const uint npq_l_vec = i % BS_NPQ_VEC;
108+
const uint crs_g = offset_crs + crs_l;
109+
110+
T_FLOAT4 val = (T_FLOAT4)(0.0f);
111+
if (crs_g < CRS) {
112+
const uint Cin_idx = crs_g / (KW * KH);
113+
const uint KH_idx = (crs_g - Cin_idx * KW * KH) / KW;
114+
const uint KW_idx = crs_g - Cin_idx * KW * KH - KH_idx * KW;
115+
for (int v = 0; v < VEC_SIZE; ++v) {
116+
const uint npq_g = offset_npq + npq_l_vec * VEC_SIZE + v;
117+
if (npq_g < NPQ) {
118+
const uint N_idx = npq_g / (OH * OW);
119+
const uint pq_idx = npq_g % (OH * OW);
120+
const uint OH_idx = pq_idx / OW;
121+
const uint OW_idx = pq_idx % OW;
122+
const int H_idx = (int)(OH_idx * s1 + KH_idx * d1 - p1);
123+
const int W_idx = (int)(OW_idx * s0 + KW_idx * d0 - p0);
124+
125+
if (H_idx >= 0 && H_idx < H && W_idx >= 0 && W_idx < W) {
126+
const uint src_idx = W_idx + H_idx * nb11 + Cin_idx * nb12 + N_idx * nb13;
127+
((T_FLOAT*)&val)[v] = src_data[src_idx];
128+
}
129+
}
130+
}
131+
}
132+
Bsh[crs_l * BS_NPQ_VEC + npq_l_vec] = val;
133+
}
134+
135+
barrier(CLK_LOCAL_MEM_FENCE);
136+
137+
#pragma unroll
138+
for (uint crs_l = 0; crs_l < BS_CRS; ++crs_l) {
139+
T_FLOAT regA[TS_K];
140+
for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) {
141+
regA[k_l_reg] = Ash[(lid_k * TS_K + k_l_reg) * BS_CRS + crs_l];
142+
}
143+
144+
for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) {
145+
T_FLOAT4 regB = Bsh[crs_l * BS_NPQ_VEC + lid_npq * TS_NPQ_VEC + npq_l_vec_reg];
146+
for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) {
147+
regC[k_l_reg][npq_l_vec_reg] = mad(convert_float(regA[k_l_reg]), convert_float4(regB), regC[k_l_reg][npq_l_vec_reg]);
148+
}
149+
}
150+
}
151+
barrier(CLK_LOCAL_MEM_FENCE);
152+
}
153+
154+
for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) {
155+
const uint k_g = offset_k + lid_k * TS_K + k_l_reg;
156+
if (k_g >= K) continue;
157+
158+
for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) {
159+
const uint npq_g_base = offset_npq + (lid_npq * TS_NPQ_VEC + npq_l_vec_reg) * VEC_SIZE;
160+
161+
const uint N_idx = npq_g_base / (OH * OW);
162+
const uint pq_idx = npq_g_base % (OH * OW);
163+
const uint OH_idx = pq_idx / OW;
164+
const uint OW_idx = pq_idx % OW;
165+
166+
if (nb1 == OW && OW_idx + VEC_SIZE <= OW && npq_g_base + VEC_SIZE <= NPQ) {
167+
const uint dst_idx = OW_idx + OH_idx*nb1 + k_g*nb2 + N_idx*nb3;
168+
VSTORE_T_FLOAT4(regC[k_l_reg][npq_l_vec_reg], 0, &dst_data[dst_idx]);
169+
} else {
170+
T_ACCUM res = regC[k_l_reg][npq_l_vec_reg];
171+
for (int v = 0; v < VEC_SIZE; ++v) {
172+
const uint npq_g = npq_g_base + v;
173+
if (npq_g < NPQ) {
174+
const uint N_idx_s = npq_g / (OH*OW);
175+
const uint pq_idx_s = npq_g % (OH*OW);
176+
const uint OH_idx_s = pq_idx_s / OW;
177+
const uint OW_idx_s = pq_idx_s % OW;
178+
const uint dst_idx_s = OW_idx_s + OH_idx_s*nb1 + k_g*nb2 + N_idx_s*nb3;
179+
dst_data[dst_idx_s] = (T_FLOAT)(((float*)&res)[v]);
180+
}
181+
}
182+
}
183+
}
184+
}
185+
}

0 commit comments

Comments
 (0)