-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvc.py
28 lines (25 loc) · 983 Bytes
/
svc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem import WordNetLemmatizer
from joblib import Parallel, delayed
import joblib
from nltk.corpus import stopwords
import nltk
import numpy as np
nltk.download('stopwords')
lem = WordNetLemmatizer()
f = open("svc_model.pkl", "rb")
loaded_model = joblib.load(f)
v = open("vectorizer.pkl", "rb")
loaded_v = joblib.load(v)
def remove_hate(data):
data = " ".join([lem.lemmatize(word) for word in data.replace(",", "").replace("!", "").replace(".", "").lower().strip().split(" ") if [l.isdigit() for l in word] and len(word) > 2 and word not in stopwords.words('english')])
X_test_tfidf = loaded_v.transform([data])
result = loaded_model.predict(X_test_tfidf)
# with open("results.txt","w") as f:
# f.write(result.tos)
if result == [0]:
print("hate")
else:
print("nothate")
return result
print(remove_hate("i love men"))