forked from razor1179/pytorch-kaldi-CGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
316 lines (244 loc) · 11.3 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
##########################################################
# pytorch-kaldi v.0.1
# Mirco Ravanelli, Titouan Parcollet
# Mila, University of Montreal
# October 2018
##########################################################
import sys
import configparser
import os
from utils import is_sequential_dict, model_init, optimizer_init, forward_model, progress
from data_io import load_counts
import numpy as np
import random
import torch
from distutils.util import strtobool
import time
import threading
from data_io import read_lab_fea, open_or_fd, write_mat
from utils import shift
def run_nn(data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict, cfg_file, processed_first,
next_config_file, if_prune=False, if_apply_ghcgs=False):
# This function processes the current chunk using the information in cfg_file. In parallel, the next chunk is load into the CPU memory
# Reading chunk-specific cfg file (first argument-mandatory file)
if not (os.path.exists(cfg_file)):
sys.stderr.write('ERROR: The config file %s does not exist!\n' % (cfg_file))
sys.exit(0)
else:
config = configparser.ConfigParser()
config.read(cfg_file)
# Setting torch seed
seed = int(config['exp']['seed'])
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
# Reading config parameters
output_folder = config['exp']['out_folder']
use_cuda = strtobool(config['exp']['use_cuda'])
multi_gpu = strtobool(config['exp']['multi_gpu'])
to_do = config['exp']['to_do']
info_file = config['exp']['out_info']
model = config['model']['model'].split('\n')
forward_outs = config['forward']['forward_out'].split(',')
forward_normalize_post = list(map(strtobool, config['forward']['normalize_posteriors'].split(',')))
forward_count_files = config['forward']['normalize_with_counts_from'].split(',')
require_decodings = list(map(strtobool, config['forward']['require_decoding'].split(',')))
use_cuda = strtobool(config['exp']['use_cuda'])
save_gpumem = strtobool(config['exp']['save_gpumem'])
is_production = strtobool(config['exp']['production'])
if to_do == 'train':
batch_size = int(config['batches']['batch_size_train'])
if to_do == 'valid':
batch_size = int(config['batches']['batch_size_valid'])
if to_do == 'forward':
batch_size = 1
# ***** Reading the Data********
if processed_first:
# Reading all the features and labels for this chunk
shared_list = []
p = threading.Thread(target=read_lab_fea, args=(cfg_file, is_production, shared_list, output_folder,))
p.start()
p.join()
data_name = shared_list[0]
data_end_index = shared_list[1]
fea_dict = shared_list[2]
lab_dict = shared_list[3]
arch_dict = shared_list[4]
data_set = shared_list[5]
# converting numpy tensors into pytorch tensors and put them on GPUs if specified
if not (save_gpumem) and use_cuda:
data_set = torch.from_numpy(data_set).float().cuda()
else:
data_set = torch.from_numpy(data_set).float()
# Reading all the features and labels for the next chunk
shared_list = []
p = threading.Thread(target=read_lab_fea, args=(next_config_file, is_production, shared_list, output_folder,))
p.start()
# Reading model and initialize networks
inp_out_dict = fea_dict
[nns, costs] = model_init(inp_out_dict, model, config, arch_dict, use_cuda, multi_gpu, to_do)
# optimizers initialization
optimizers = optimizer_init(nns, config, arch_dict)
# pre-training
for net in nns.keys():
pt_file_arch = config[arch_dict[net][0]]['arch_pretrain_file']
if pt_file_arch != 'none':
checkpoint_load = torch.load(pt_file_arch)
nns[net].load_state_dict(checkpoint_load['model_par'])
optimizers[net].load_state_dict(checkpoint_load['optimizer_par'])
optimizers[net].param_groups[0]['lr'] = float(
config[arch_dict[net][0]]['arch_lr']) # loading lr of the cfg file for pt
if to_do == 'forward':
post_file = {}
for out_id in range(len(forward_outs)):
if require_decodings[out_id]:
out_file = info_file.replace('.info', '_' + forward_outs[out_id] + '_to_decode.ark')
else:
out_file = info_file.replace('.info', '_' + forward_outs[out_id] + '.ark')
post_file[forward_outs[out_id]] = open_or_fd(out_file, output_folder, 'wb')
# check automatically if the model is sequential
seq_model = is_sequential_dict(config, arch_dict)
# ***** Minibatch Processing loop********
if seq_model or to_do == 'forward':
N_snt = len(data_name)
N_batches = int(N_snt / batch_size)
else:
N_ex_tr = data_set.shape[0]
N_batches = int(N_ex_tr / batch_size)
beg_batch = 0
end_batch = batch_size
snt_index = 0
beg_snt = 0
start_time = time.time()
# array of sentence lengths
arr_snt_len = shift(shift(data_end_index, -1, 0) - data_end_index, 1, 0)
arr_snt_len[0] = data_end_index[0]
loss_sum = 0
err_sum = 0
inp_dim = data_set.shape[1]
for i in range(N_batches):
max_len = 0
if seq_model:
max_len = int(max(arr_snt_len[snt_index:snt_index + batch_size]))
inp = torch.zeros(max_len, batch_size, inp_dim).contiguous()
for k in range(batch_size):
snt_len = data_end_index[snt_index] - beg_snt
N_zeros = max_len - snt_len
# Appending a random number of initial zeros, tge others are at the end.
N_zeros_left = random.randint(0, N_zeros)
# randomizing could have a regularization effect
inp[N_zeros_left:N_zeros_left + snt_len, k, :] = data_set[beg_snt:beg_snt + snt_len, :]
beg_snt = data_end_index[snt_index]
snt_index = snt_index + 1
else:
# features and labels for batch i
if to_do != 'forward':
inp = data_set[beg_batch:end_batch, :].contiguous()
else:
snt_len = data_end_index[snt_index] - beg_snt
inp = data_set[beg_snt:beg_snt + snt_len, :].contiguous()
beg_snt = data_end_index[snt_index]
snt_index = snt_index + 1
# use cuda
if use_cuda:
inp = inp.cuda()
if to_do == 'train':
# Forward input, with autograd graph active
outs_dict = forward_model(fea_dict, lab_dict, arch_dict, model, nns, costs, inp, inp_out_dict, max_len,
batch_size, to_do, forward_outs)
for opt in optimizers.keys():
optimizers[opt].zero_grad()
outs_dict['loss_final'].backward()
# Gradient Clipping (th 0.1)
# for net in nns.keys():
# torch.nn.utils.clip_grad_norm_(nns[net].parameters(), 0.1)
for opt in optimizers.keys():
if not (strtobool(config[arch_dict[opt][0]]['arch_freeze'])):
optimizers[opt].step()
else:
with torch.no_grad(): # Forward input without autograd graph (save memory)
outs_dict = forward_model(fea_dict, lab_dict, arch_dict, model, nns, costs, inp, inp_out_dict, max_len,
batch_size, to_do, forward_outs)
if to_do == 'forward':
for out_id in range(len(forward_outs)):
out_save = outs_dict[forward_outs[out_id]].data.cpu().numpy()
if forward_normalize_post[out_id]:
# read the config file
counts = load_counts(forward_count_files[out_id])
out_save = out_save - np.log(counts / np.sum(counts))
# save the output
write_mat(output_folder, post_file[forward_outs[out_id]], out_save, data_name[i])
else:
loss_sum = loss_sum + outs_dict['loss_final'].detach()
err_sum = err_sum + outs_dict['err_final'].detach()
# update it to the next batch
beg_batch = end_batch
end_batch = beg_batch + batch_size
# Progress bar
if to_do == 'train':
status_string = "Training | (Batch " + str(i + 1) + "/" + str(N_batches) + ")" + " | L:" + str(
round(loss_sum.cpu().item() / (i + 1), 3))
if i == N_batches - 1:
status_string = "Training | (Batch " + str(i + 1) + "/" + str(N_batches) + ")"
if to_do == 'valid':
status_string = "Validating | (Batch " + str(i + 1) + "/" + str(N_batches) + ")"
if to_do == 'forward':
status_string = "Forwarding | (Batch " + str(i + 1) + "/" + str(N_batches) + ")"
progress(i, N_batches, status=status_string)
elapsed_time_chunk = time.time() - start_time
loss_tot = loss_sum / N_batches
err_tot = err_sum / N_batches
# clearing memory
del inp, outs_dict, data_set
# save the model
if to_do == 'train':
for net in nns.keys():
checkpoint = {}
# pruning if epoch complete
if nns[net].prune and if_prune:
print('Pruning parameters of ' + net)
prune_ret = nns[net].prune_parameters()
if prune_ret == 1:
print('Pruning complete of ' + net)
# creating guided HCGS masks
if nns[net].guided_hcgs and not nns[net].apply_guided_hcgs:
ghcgs_ret = nns[net].apply_ghcgs()
# if ghcgs_ret == 1:
# print('')
checkpoint['model_par'] = nns[net].state_dict()
checkpoint['optimizer_par'] = optimizers[net].state_dict()
out_file = info_file.replace('.info', '_' + arch_dict[net][0] + '.pkl')
torch.save(checkpoint, out_file)
# if to_do == 'valid':
# for net in nns.keys():
# checkpoint = {}
# checkpoint['model_par'] = nns[net].state_dict()
# checkpoint['optimizer_par'] = optimizers[net].state_dict()
#
# out_file = info_file.replace('.info', '_' + arch_dict[net][0] + '.pkl')
# torch.save(checkpoint, out_file)
if to_do == 'forward':
for out_name in forward_outs:
post_file[out_name].close()
# Write info file
with open(info_file, "w") as text_file:
text_file.write("[results]\n")
if to_do != 'forward':
text_file.write("loss=%s\n" % loss_tot.cpu().numpy())
text_file.write("err=%s\n" % err_tot.cpu().numpy())
text_file.write("elapsed_time_chunk=%f\n" % elapsed_time_chunk)
text_file.close()
# Getting the data for the next chunk (read in parallel)
p.join()
data_name = shared_list[0]
data_end_index = shared_list[1]
fea_dict = shared_list[2]
lab_dict = shared_list[3]
arch_dict = shared_list[4]
data_set = shared_list[5]
# converting numpy tensors into pytorch tensors and put them on GPUs if specified
if not (save_gpumem) and use_cuda:
data_set = torch.from_numpy(data_set).float().cuda()
else:
data_set = torch.from_numpy(data_set).float()
return [data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict]