Example data from: Wikipedia > Naive_Bayes_classifier > Examples
sex | height (feet) | weight (lbs) | foot size(inches)
--------+---------------+--------------+-----------------
male | 6 | 180 | 12
male | 5.92 (5'11") | 190 | 11
male | 5.58 (5'7") | 170 | 12
male | 5.92 (5'11") | 165 | 10
female | 5 | 100 | 6
female | 5.5 (5'6") | 150 | 8
female | 5.42 (5'5") | 130 | 7
female | 5.75 (5'9") | 150 | 9
sex | height (feet) | weight (lbs) | foot size(inches)
--------+---------------+--------------+-----------------
? | 6 | 130 | 8
female
Using GUI (Orange3)
=== train.X ===
[[ 6. 180. 12. ]
[ 5.92 190. 11. ]
[ 5.58 170. 12. ]
[ 5.92 165. 10. ]
[ 5. 100. 6. ]
[ 5.5 150. 8. ]
[ 5.42 130. 7. ]
[ 5.75 150. 9. ]]
=== train.Y ===
[ 1. 1. 1. 1. 0. 0. 0. 0.]
=== predict.X ===
[[ 6. 130. 8.]]
=== results ===
LogisticRegressionLearner: female
NaiveBayesLearner : female
TreeLearner : female
RandomForestLearner : female
KNNLearner : female
SVMLearner : female
=== train_X ===
height weight foot_size
0 6.00 180 12
1 5.92 190 11
2 5.58 170 12
3 5.92 165 10
4 5.00 100 6
5 5.50 150 8
6 5.42 130 7
7 5.75 150 9
=== train_Y ===
0 male
1 male
2 male
3 male
4 female
5 female
6 female
7 female
Name: sex, dtype: object
=== predict_X ===
height weight foot_size
0 6 130 8
=== results ===
GaussianNB : female
LogisticRegression : female
DecisionTreeClassifier : female
KNeighborsClassifier : female
RandomForestClassifier : female
AdaBoostClassifier : female
SVC : female
=== train_X ===
[[ 6. 180. 12. ]
[ 5.92 190. 11. ]
[ 5.58 170. 12. ]
[ 5.92 165. 10. ]
[ 5. 100. 6. ]
[ 5.5 150. 8. ]
[ 5.42 130. 7. ]
[ 5.75 150. 9. ]]
=== train_Y ===
[1 1 1 1 0 0 0 0]
=== predict_X ===
[[ 6 130 8]]
=== results ===
ClassificationTree : female
NaiveBayes : female
Training: 100% [-----------------------------------------------------------------------------------------] Time: 0:00:00
RandomForest : female
Training: 100% [-----------------------------------------------------------------------------------------] Time: 0:00:01
XGBoost : female
KNN : female