-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatlc.py
381 lines (319 loc) · 12.7 KB
/
atlc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/python
import numpy as np
import scipy.interpolate
import scipy.integrate
from scipy.integrate import cumtrapz, trapz
from scipy.interpolate import interp1d
from scipy.optimize import root_scalar, minimize_scalar
import matplotlib.pyplot as plt
import pandas as pd
import sys
from scfermi import Scfermi, run_scfermi_all
# e = 1.60217662E-19 # elementary charge
kb = 8.6173303e-5 # eV K-1, Boltzmann constant
sun_power = 100. # mW/cm2
k = 1.38064852e-23 # m^2 kg s^-2 K^-1, Boltzmann constant
h = 6.62607004e-34 # m^2 kg s^-1 , planck constant
c = 2.99792458e8 # m s^-1 , speed of light
eV = 1.6021766208e-19 # joule , eV to joule
q = 1.6021766208e-19 # C , elemental charge
# http://rredc.nrel.gov/solar/spectra/am1.5/
ref_solar = pd.read_csv("ASTMG173.csv", header=1) # nm vs W m^-2 nm^-1
# data range: 280nm to 4000nm, 0.31eV to 4.42857 eV
# WL (nm), W*m-2*nm-1
WL, solar_per_nm = ref_solar.iloc[:, 0], ref_solar.iloc[:, 2]
E = 1240.0 / WL # eV
# jacobian transformation, W m^-2 eV^-1
solar_per_E = solar_per_nm * (eV/1e-9) * h * c / (eV*E)**2
Es = np.arange(0.32, 4.401, 0.002)
# linear interpolation to get an equally spaced spectrum
AM15 = np.interp(Es, E[::-1], solar_per_E[::-1]) # W m^-2 eV^-1
AM15flux = AM15 / (Es*eV) # number of photon m^-2 eV^-1 s^-1
class Trap():
def __init__(self, D, E_t, N_t, q1, q2, C_p, C_n):
self.D = D
self.E_t = E_t
self.N_t = N_t
self.q1 = q1
self.q2 = q2
# capture coeff (avoiding div by 0)
self.C_p = C_p if C_p > 0 else 1E-100
self.C_n = C_n if C_n > 0 else 1E-100
self.name = "${{{}}} ({}/{})$".format(D, q1, q2)
def rate(self, n0, p0, delta_n, N_n, N_p, e_gap, temp):
n1 = N_n*np.exp(-(e_gap-self.E_t)/kb/temp)
p1 = N_p*np.exp(-self.E_t/kb/temp)
n = n0 + delta_n
p = p0 + delta_n
R = (n*p - n0*p0)/((p+p1)/(self.N_t*self.C_n) + (n+n1)/(self.N_t*self.C_p))
return R
def __repr__(self):
repr = "{} ({}/{}) {:.2E} {} {:.2E} {:.2E}".format(self.D,
self.q1, self.q2, self.N_t, self.E_t, self.C_n, self.C_p)
return repr
def __str__(self):
repr = "{} ({}/{}) {:.2E} {} {:.2E} {:.2E}".format(self.D,
self.q1, self.q2, self.N_t, self.E_t, self.C_n, self.C_p)
return repr
class tlc(object):
ALPHA_FILE = "alpha.csv"
SCFERMI_FILE = "input-fermi.dat"
TRAP_FILE = "input-fermi.dat"
def __init__(self, E_gap, T=300, Tanneal=835, thickness=2000, intensity=1.0, l_sq=False):
"""
E_gap: band gap in eV
T: temperature in K
thickness: thickness in nm
intensity: light concentration, 1.0 = one Sun, 100 mW/cm^2 (not yet effective yet)
"""
try:
E_gap, T, thickness, intensity = float(E_gap), float(
T), float(thickness), float(intensity)
except:
raise ValueError(
"Invalid input for E_gap, T, thickness, or intensity")
if T <= 0 or E_gap < 0.31:
raise ValueError("T must be greater than 0 and " +
"E_gap cannot be less than 0.31")
self.Vs = np.arange(-0.1, E_gap, 0.001)
self.T = T
self.Tanneal = Tanneal
self.E_gap = E_gap
self.thickness = thickness
self.intensity = intensity
self.Es = Es # np.arange(0.32, 4.401, 0.002)
self.l_calc = False
self.l_sq = l_sq
if not l_sq:
self._calc_absorptivity()
else:
self.absorptivity = np.heaviside(Es - self.E_gap, 1)
self.alpha = pd.DataFrame(
{"E": Es, "alpha": np.heaviside(Es - self.E_gap, 1) * 1E100})
self.scfermi = None
self.R_SRH = None
# self.WLs = np.arange(280, 4001, 1.0)
# self.AM15nm = np.interp(self.WLs, WL, solar_per_nm)
def __repr__(self):
"""
params
"""
if self.l_sq:
s = "Shockley-Queisser limit (SQ limit)\n"
else:
s = "Trap limited conversion efficiency (TLC)\n"
s += "T: {:.1f} K\n".format(self.T)
s += "E_gap: {:.1f} eV\n".format(self.E_gap)
s += "Thickness: {:.1f} nm".format(self.thickness)
if self.l_calc:
s += "\n===\n"
s += "J_sc: {:.3f} mA/cm^2\n".format(self.j_sc)
s += "J0_rad: {:.3g} mA/cm^2\n".format(self.j0_rad)
s += "V_oc: {:.3f} V\n".format(self.v_oc)
s += "V_max, J_max: {:.3f} V, {:.3f} mA/cm^2\n".format(
self.v_max, self.j_max)
s += "FF: {:.3f}%\n".format(self.ff*100)
s += "Efficiency: {:.3f}%".format(self.efficiency*100)
return s
def calculate_SRH(self):
self._get_scfermi(tlc.SCFERMI_FILE)
self._run_scfermi(self.Tanneal, self.T)
self._read_traps()
self.R_SRH = self.__get_R_SRH(self.Vs)
def calculate_rad(self):
self.j_sc = self.__cal_J_sc()
self.j0_rad = self.__cal_J0_rad()
self.jv = self.__cal_jv(self.Vs)
self.v_oc = self.__cal_v_oc()
self.v_max, self.j_max, self.efficiency = self.__calc_eff()
self.ff = self.__calc_ff()
self.l_calc = True
def calculate(self):
self.calculate_SRH()
self.calculate_rad()
def __cal_J_sc(self):
fluxcumm = cumtrapz(
self.absorptivity[::-1] * AM15flux[::-1], self.Es[::-1], initial=0)
# fluxcumm = cumtrapz(AM15flux[::-1], self.Es[::-1], initial=0)
# TODO: no E_gap
fluxaboveE = fluxcumm[::-1] * -1 * self.intensity
flux_absorbed = interp1d(self.Es, fluxaboveE)(self.E_gap)
#
J_sc = flux_absorbed * q * 0.1 # mA/cm^2 (0.1: from A/m2 to mA/cm2)
return J_sc
def __cal_J0_rad(self):
'''
Calculate and return J0, the dark saturation current
J0 = q * (integrate(phi dE) from E to infinity) / EQE_EL
phi is the black body radiation at T (flux vs energy)
'''
phi = 2 * np.pi * (((self.Es*eV)**2) * eV / ((h**3) * (c**2)) / (
np.exp(self.Es*eV / (k*self.T)) - 1))
# fluxcumm = cumtrapz(phi[::-1], self.Es[::-1], initial=0)
fluxcumm = cumtrapz(
self.absorptivity[::-1] * phi[::-1], self.Es[::-1], initial=0)
# TODO: no E_gap
fluxaboveE = fluxcumm[::-1] * -1
flux_absorbed = interp1d(self.Es, fluxaboveE)(self.E_gap)
#
j0 = flux_absorbed * q * 0.1 # (0.1: from A/m2 to mA/cm2)
return j0
def __cal_jv(self, Vs):
"""
simulate jv
"""
j_sc, j0_rad = self.j_sc, self.j0_rad
j = -1.0 * j_sc + j0_rad * (np.exp(q*Vs / (k*self.T)) - 1)
# nonraditive recombination
if self.R_SRH is not None:
j += q * self.R_SRH / 1E-3 * self.thickness * 1E-7
jv = pd.DataFrame({"V": Vs, "J": j})
return jv
def __cal_v_oc(self):
"""
"""
def f(v): return interp1d(self.jv.V, self.jv.J)(v)
sol = root_scalar(f, bracket=[0, self.jv.V.max()])
return sol.root
def __find_max_point(self):
"""
Calculate aren return the voltage that produces
the maximum power
"""
power = self.jv.J * self.jv.V
def f(v): return interp1d(self.jv.V, power)(v)
res = minimize_scalar(f, method='Bounded', bounds=[0, self.jv.V.max()])
return res.x
def __calc_eff(self):
v_max = self.__find_max_point()
power = self.jv.J * self.jv.V
def eff(v): return interp1d(self.jv.V, power)(v) \
/ sun_power * self.intensity
def j(v): return interp1d(self.jv.V, self.jv.J)(v)
return v_max, -j(v_max), -eff(v_max)
def __calc_ff(self):
ff = self.v_max * self.j_max / self.v_oc / self.j_sc
return ff
# absorptivity
#
def __read_alpha(self):
alpha = pd.read_csv(tlc.ALPHA_FILE)
# alpha.plot(x='E', y='alpha')
self.alpha = alpha
def _calc_absorptivity(self):
self.__read_alpha()
absorptivity = 1 - \
np.exp(-2 * self.alpha.alpha * self.thickness * 1E7) # nm -> cm
self.absorptivity = np.interp(
Es, self.alpha.E[::-1], absorptivity[::-1]) # W m^-2 eV^-1
# nonradiative recombination
#
def _get_scfermi(self, file_efrom):
"""
read formation energies of defects, POSCAR, totdos
"""
self.scfermi = Scfermi.from_file(file_efrom)
def _run_scfermi(self, Tanneal, Tfrozen):
"""
run scfermi
1. calculate equilibrium concentrations of defects at Tanneal
2. calcualte charge states of defects and carrier concentrations at Tfrozen
"""
run_scfermi_all(self.scfermi, Tanneal=Tanneal, Tfrozen=Tfrozen)
def _read_traps(self, file='trap.dat'):
trap_list = []
df_trap = pd.read_csv(file, comment='#', sep=r'\s+', usecols=range(6))
for index, data in df_trap.iterrows():
D, E_t, C_p, C_n = data.D, data.level, data.C_p, data.C_n
q1, q2 = data.q1, data.q2
N_t = 0
trap_list.append(Trap(D, E_t, N_t, q1, q2, C_p, C_n))
self.trap_list = trap_list
def __get_delta_n(self, V):
scfermi = self.scfermi
def calc_DOS_eff(carrier_concnt, e_f, temp):
return carrier_concnt/np.exp(-e_f/(kb*temp))
n0 = scfermi.n
p0 = scfermi.p
e_gap = scfermi.e_gap
temp = scfermi.T
Vc = kb*temp
N_p = calc_DOS_eff(p0, scfermi.fermi_level, scfermi.T)
N_n = calc_DOS_eff(n0, e_gap - scfermi.fermi_level, scfermi.T)
scfermi.N_p = N_p
scfermi.N_n = N_n
delta_n = 1/2. * (-n0 - p0 + np.sqrt((n0 + p0)**2 -
4 * n0 * p0 * (1 - np.exp(V/Vc))))
return delta_n
def __cal_R_SRH(self, V):
assert self.scfermi is not None
delta_n = self.__get_delta_n(V)
scfermi = self.scfermi
n0 = scfermi.n
p0 = scfermi.p
N_n = scfermi.N_n
N_p = scfermi.N_p
for trap in self.trap_list:
defect = next(
defect for defect in scfermi.defects if defect.name == trap.D)
trap.N_t = 0
for cs in defect.chg_states:
if cs.q in (trap.q1, trap.q2):
trap.N_t += cs.concnt
R = np.sum([trap.rate(n0, p0, delta_n, N_n, N_p, scfermi.e_gap, scfermi.T)
for trap in self.trap_list])
return R
def __get_R_SRH(self, Vs):
Rs = np.array([self.__cal_R_SRH(V) for V in Vs])
return Rs
# Plot helper
def plot_tauc(self):
tauc = (self.alpha.alpha*self.alpha.E)**2
plt.figure(0)
plt.plot(self.alpha.E, tauc)
plt.plot([self.E_gap, self.E_gap], [-1E10, 1E10],
ls='--', label="Band gap")
plt.xlabel("Energy (eV)", fontsize=16)
plt.ylabel(
"$\mathregular{(ahv)^2}$ ($\mathregular{eV^2cm^{-2}}$)", fontsize=16)
plt.title("Tauc plot")
plt.legend()
plt.xlim((self.E_gap-0.5, self.E_gap+0.5))
plt.ylim((0, 10E9))
# plt.yscale("log")
# plt.show()
def plot_alpha(self, l_plot_solar=True):
self.alpha.plot(x='E', y='alpha', logy=True)
plt.plot([self.E_gap, self.E_gap], [-1E10, 1E10],
ls='--', label="Band gap")
plt.ylim((10E0, 10E6))
plt.xlabel("Energy (eV)", fontsize=16)
plt.ylabel("Absorption coefficient ($\mathregular{cm^{-1}}$)",
fontsize=16)
if not self.l_sq:
plt.title("Absorption coefficient (taken from {})".format(tlc.ALPHA_FILE))
else:
plt.title("Absorption coefficient (SQ limit)".format(tlc.ALPHA_FILE))
plt.legend(loc=1)
if l_plot_solar:
# plt.xlim((0, self.E_gap))
plt.twinx()
plt.plot(Es, AM15*1E-3, label="AM1.5G", c='gray')
plt.ylabel("Spectral irradiation ($\mathregular{kW m^{-2} eV^{-1}}$)",
fontsize=16)
plt.legend(loc=4)
# plt.show()
def plot_jv(self):
self.jv.mask(self.jv.J > 100).plot(x="V", y="J")
plt.ylim((self.j_sc*-1.2, 0))
plt.xlim((0, self.E_gap))
plt.xlabel("Voltage (V)", fontsize=16)
plt.ylabel("Current density (mA/$\mathregular{cm^2}$)",
fontsize=16)
plt.title("Theoretical J-V for Eg = {:.3f} eV".format(self.E_gap))
# plt.show()
if __name__ == "__main__":
tlc_CZTS = tlc(1.5, T=300)
tlc_CZTS.calculate()
print(tlc_CZTS)
tlc_CZTS.plot_tauc()