We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi,
I'm up to the train stage. but I'm getting an error that I think is related to GPU parameters. what was the model of the card you used?
2023-01-31 14:55:41,056 maskrcnn_benchmark INFO: Saving config into: /root/ebms_regression/detection/checkpoints/nce+/config.yml 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Using 1 GPUs 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Namespace(config_file='configs/nce+_train.yaml', distributed=False, local_rank=0, opts=[], skip_test=False) 2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Collecting env info (might take some time) 2023-01-31 15:13:18,383 maskrcnn_benchmark INFO: PyTorch version: 1.0.0.dev20190401 Is debug build: No CUDA used to build PyTorch: 9.0.176
OS: Ubuntu 16.04.5 LTS GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609 CMake version: version 3.14.20190401-g3e12
Python version: 3.6 Is CUDA available: Yes CUDA runtime version: 9.0.176 GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 512.78 cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.4.2
Versions of relevant libraries: [pip3] numpy==1.19.5 [pip3] torch-nightly==1.0.0.dev20190401 [pip3] torchvision-nightly==0.2.1 ....................................... Selected optimization level O0: Pure FP32 training.
Defaults for this optimization level are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 2023-02-05 11:30:55,867 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from /root/ebms_regression/detection/pretrained_models/e2e_faster_R-50-FPN_1x.pkl 2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: Remapping C2 weights 2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_b mapped name: bbox_pred.bias 2023-02-05 11:30:56,797 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_w mapped name: bbox_pred.weight ........... creating index... index created! 2023-02-05 10:49:27,779 maskrcnn_benchmark.utils.miscellaneous INFO: Saving labels mapping into /root/ebms_regression/detection/checkpoints/nce+/labels.json 2023-02-05 10:49:27,781 maskrcnn_benchmark.trainer INFO: Start training THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=383 error=8 : invalid device function
The text was updated successfully, but these errors were encountered:
Hi, I used NVIDIA TITAN Xp GPUs.
Sorry, something went wrong.
Hi, i meet the same problem ,have you solved the problem?
I searched that RTX 3060 must use cuda 11.0 at least , I tried,but failed
No branches or pull requests
Hi,
I'm up to the train stage. but I'm getting an error that I think is related to GPU parameters. what was the model of the card you used?
2023-01-31 14:55:41,056 maskrcnn_benchmark INFO: Saving config into: /root/ebms_regression/detection/checkpoints/nce+/config.yml
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Using 1 GPUs
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Namespace(config_file='configs/nce+_train.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2023-01-31 15:13:18,383 maskrcnn_benchmark INFO:
PyTorch version: 1.0.0.dev20190401
Is debug build: No
CUDA used to build PyTorch: 9.0.176
OS: Ubuntu 16.04.5 LTS
GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609
CMake version: version 3.14.20190401-g3e12
Python version: 3.6
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU
Nvidia driver version: 512.78
cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.4.2
Versions of relevant libraries:
[pip3] numpy==1.19.5
[pip3] torch-nightly==1.0.0.dev20190401
[pip3] torchvision-nightly==0.2.1
.......................................
Selected optimization level O0: Pure FP32 training.
Defaults for this optimization level are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Processing user overrides (additional kwargs that are not None)...
After processing overrides, optimization options are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
2023-02-05 11:30:55,867 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from /root/ebms_regression/detection/pretrained_models/e2e_faster_R-50-FPN_1x.pkl
2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: Remapping C2 weights
2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_b mapped name: bbox_pred.bias
2023-02-05 11:30:56,797 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_w mapped name: bbox_pred.weight
...........
creating index...
index created!
2023-02-05 10:49:27,779 maskrcnn_benchmark.utils.miscellaneous INFO: Saving labels mapping into /root/ebms_regression/detection/checkpoints/nce+/labels.json
2023-02-05 10:49:27,781 maskrcnn_benchmark.trainer INFO: Start training
THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=383 error=8 : invalid device function
The text was updated successfully, but these errors were encountered: