Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Invalid device function with GeForce RTX 3060 #6

Open
selcukyazar opened this issue Feb 5, 2023 · 3 comments
Open

Invalid device function with GeForce RTX 3060 #6

selcukyazar opened this issue Feb 5, 2023 · 3 comments

Comments

@selcukyazar
Copy link

Hi,

I'm up to the train stage. but I'm getting an error that I think is related to GPU parameters. what was the model of the card you used?

2023-01-31 14:55:41,056 maskrcnn_benchmark INFO: Saving config into: /root/ebms_regression/detection/checkpoints/nce+/config.yml
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Using 1 GPUs
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Namespace(config_file='configs/nce+_train.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2023-01-31 15:13:17,753 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2023-01-31 15:13:18,383 maskrcnn_benchmark INFO:
PyTorch version: 1.0.0.dev20190401
Is debug build: No
CUDA used to build PyTorch: 9.0.176

OS: Ubuntu 16.04.5 LTS
GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609
CMake version: version 3.14.20190401-g3e12

Python version: 3.6
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU
Nvidia driver version: 512.78
cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.4.2

Versions of relevant libraries:
[pip3] numpy==1.19.5
[pip3] torch-nightly==1.0.0.dev20190401
[pip3] torchvision-nightly==0.2.1
.......................................
Selected optimization level O0: Pure FP32 training.

Defaults for this optimization level are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Processing user overrides (additional kwargs that are not None)...
After processing overrides, optimization options are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
2023-02-05 11:30:55,867 maskrcnn_benchmark.utils.checkpoint INFO: Loading checkpoint from /root/ebms_regression/detection/pretrained_models/e2e_faster_R-50-FPN_1x.pkl
2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: Remapping C2 weights
2023-02-05 11:30:56,796 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_b mapped name: bbox_pred.bias
2023-02-05 11:30:56,797 maskrcnn_benchmark.utils.c2_model_loading INFO: C2 name: bbox_pred_w mapped name: bbox_pred.weight
...........
creating index...
index created!
2023-02-05 10:49:27,779 maskrcnn_benchmark.utils.miscellaneous INFO: Saving labels mapping into /root/ebms_regression/detection/checkpoints/nce+/labels.json
2023-02-05 10:49:27,781 maskrcnn_benchmark.trainer INFO: Start training
THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=383 error=8 : invalid device function

@fregu856
Copy link
Owner

fregu856 commented Feb 6, 2023

Hi, I used NVIDIA TITAN Xp GPUs.

@zhanghaochen-817
Copy link

Hi, i meet the same problem ,have you solved the problem?

@zhanghaochen-817
Copy link

I searched that RTX 3060 must use cuda 11.0 at least , I tried,but failed

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants