forked from fhvilshoj/TorchLRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
explain_mnist.py
142 lines (107 loc) · 5.35 KB
/
explain_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import sys
import torch
import random
import pathlib
import argparse
import torchvision
import matplotlib.pyplot as plt
from utils import get_mnist_model, prepare_mnist_model, get_mnist_data
from utils import store_patterns, load_patterns
from visualization import heatmap_grid
# Append parent directory of this file to sys.path,
# no matter where it is run from
base_path = pathlib.Path(__file__).parent.parent.absolute()
sys.path.insert(0, base_path.as_posix())
from lrp.patterns import fit_patternnet, fit_patternnet_positive # PatternNet patterns
def plot_attribution(a, ax_, preds, title, cmap='seismic', img_shape=28):
ax_.imshow(a)
ax_.axis('off')
cols = a.shape[1] // (img_shape+2)
rows = a.shape[0] // (img_shape+2)
for i in range(rows):
for j in range(cols):
ax_.text(28+j*30, 28+i*30, preds[i*cols+j].item(), horizontalalignment="right", verticalalignment="bottom", color="lime")
ax_.set_title(title)
def main(args):
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_samples_plot = min(args.batch_size, 9)
model = get_mnist_model()
# Either train new model or load pretrained weights
prepare_mnist_model(model, epochs=args.epochs, train_new=args.train_new)
model = model.to(args.device)
train_loader, test_loader = get_mnist_data(transform=torchvision.transforms.ToTensor(), batch_size=args.batch_size)
# Sample batch from test_loader
for x, y in test_loader: break
x = x[:num_samples_plot].to(args.device)
y = y[:num_samples_plot].to(args.device)
x.requires_grad_(True)
with torch.no_grad():
y_hat = model(x)
pred = y_hat.max(1)[1]
def compute_and_plot_explanation(rule, ax_, title=None, postprocess=None, pattern=None, cmap='seismic'):
# # # # For the interested reader:
# This is where the LRP magic happens.
# Reset gradient
x.grad = None
# Forward pass with rule argument to "prepare" the explanation
y_hat = model.forward(x, explain=True, rule=rule, pattern=pattern)
# Choose argmax
y_hat = y_hat[torch.arange(x.shape[0]), y_hat.max(1)[1]]
# y_hat *= 0.5 * y_hat # to use value of y_hat as starting point
y_hat = y_hat.sum()
# Backward pass (compute explanation)
y_hat.backward()
attr = x.grad
if postprocess: # Used to compute input * gradient
with torch.no_grad():
attr = postprocess(attr)
attr = heatmap_grid(attr, cmap_name=cmap)
if title is None: title = rule
plot_attribution(attr, ax_, pred, title, cmap=cmap)
# # # # Patterns for PatternNet and PatternAttribution
all_patterns_path = (base_path / 'examples' / 'patterns' / 'pattern_all.pkl').as_posix()
if not os.path.exists(all_patterns_path): # Either load of compute them
patterns_all = fit_patternnet(model, train_loader, device=args.device)
store_patterns(all_patterns_path, patterns_all)
else:
patterns_all = [torch.tensor(p, device=args.device, dtype=torch.float32) for p in load_patterns(all_patterns_path)]
pos_patterns_path = (base_path / 'examples' / 'patterns' / 'pattern_pos.pkl').as_posix()
if not os.path.exists(pos_patterns_path):
patterns_pos = fit_patternnet_positive(model, train_loader, device=args.device)#, max_iter=1)
store_patterns(pos_patterns_path, patterns_pos)
else:
patterns_pos = [torch.from_numpy(p).to(args.device) for p in load_patterns(pos_patterns_path)]
# # # Plotting
fig, ax = plt.subplots(2, 5, figsize=(10, 5))
with torch.no_grad():
x_plot = heatmap_grid(x*2-1, cmap_name="gray")
plot_attribution(x_plot, ax[0, 0], pred, "Input")
# compute_and_plot_explanation("gradient", ax[1, 0], title="gradient")
compute_and_plot_explanation("gradient", ax[1, 0], title="input $\\times$ gradient", postprocess = lambda attribution: attribution * x)
compute_and_plot_explanation("epsilon", ax[0, 1])
compute_and_plot_explanation("gamma+epsilon", ax[1, 1])
#
compute_and_plot_explanation("alpha1beta0", ax[0, 2])
compute_and_plot_explanation("alpha2beta1", ax[1, 2])
#
compute_and_plot_explanation("patternnet", ax[0, 3], pattern=patterns_all, title="PatternNet $S(x)$", cmap='gray')
compute_and_plot_explanation("patternnet", ax[1, 3], pattern=patterns_pos, title="PatternNet $S(x)_{+-}$", cmap='gray')
compute_and_plot_explanation("patternattribution", ax[0, 4], pattern=patterns_all, title="PatternAttribution $S(x)$")
compute_and_plot_explanation("patternattribution", ax[1, 4], pattern=patterns_pos, title="PatternAttribution $S(x)_{+-}$")
fig.tight_layout()
fig.savefig((base_path / 'examples' / 'plots' / "mnist_explanations.png").as_posix(), dpi=280)
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser("MNIST LRP Example")
parser.add_argument('--batch_size', type=int, default=3000)
parser.add_argument('--train_new', action='store_true', help='Train new predictive model')
parser.add_argument('--epochs', '-e', type=int, default=5)
parser.add_argument('--seed', '-d', type=int)
args = parser.parse_args()
if args.seed is None:
args.seed = int(random.random() * 1e9)
print("Setting seed: %i" % args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
main(args)