-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpipe.go
405 lines (333 loc) · 6.86 KB
/
pipe.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//
// Copyright (C) 2022 - 2024 Dmitry Kolesnikov
//
// This file may be modified and distributed under the terms
// of the MIT license. See the LICENSE file for details.
// https://github.com/fogfish/golem
//
// Package pipe simplify the creation of streaming data pipelines using
// sequential channel workers. The package is semantically compatible with fork.
package pipe
import (
"context"
"log/slog"
"sync"
"time"
"github.com/fogfish/golem/pure/monoid"
)
// Emit creates a channel and takes a function that emits data at a specified frequency.
func Emit[T any](ctx context.Context, cap int, frequency time.Duration, emit func() (T, error)) (<-chan T, <-chan error) {
out := make(chan T, cap)
exx := make(chan error, 1)
go func() {
defer close(out)
defer close(exx)
var (
val T
err error
)
for {
time.Sleep(frequency)
val, err = emit()
if err != nil {
exx <- err
return
}
select {
case out <- val:
case <-ctx.Done():
return
}
}
}()
return out, exx
}
// Filter returns a newly-allocated channel that contains only those elements x
// of the input channel for which predicate is true.
func Filter[A any](ctx context.Context, in <-chan A, f func(A) bool) <-chan A {
out := make(chan A, cap(in))
go func() {
defer close(out)
var a A
for a = range in {
if f(a) {
select {
case out <- a:
case <-ctx.Done():
return
}
}
}
}()
return out
}
// ForEach applies function for each message in the channel
func ForEach[A any](ctx context.Context, in <-chan A, f func(A)) <-chan struct{} {
done := make(chan struct{})
go func() {
defer close(done)
var x A
for x = range in {
f(x)
select {
case <-ctx.Done():
return
default:
}
}
}()
return done
}
// FMap applies function over channel messages, flatten the output channel and
// emits it result to new channel.
func FMap[A, B any](ctx context.Context, in <-chan A, fmap func(context.Context, A, chan<- B) error) (<-chan B, <-chan error) {
out := make(chan B, cap(in))
exx := make(chan error, 1)
go func() {
defer close(out)
defer close(exx)
var a A
for a = range in {
if err := fmap(ctx, a, out); err != nil {
exx <- err
return
}
select {
case <-ctx.Done():
return
default:
}
}
}()
return out, exx
}
// Fold applies a monoid operation to the values in a channel. The final value is
// emitted though return channel when the end of the input channel is reached.
func Fold[A any](ctx context.Context, in <-chan A, m monoid.Monoid[A]) <-chan A {
done := make(chan A, 1)
go func() {
acc := m.Empty()
defer func() {
done <- acc
close(done)
}()
var x A
for x = range in {
acc = m.Combine(acc, x)
select {
case <-ctx.Done():
return
default:
}
}
}()
return done
}
// Map applies function over channel messages, emits result to new channel
func Map[A, B any](ctx context.Context, in <-chan A, fmap func(A) (B, error)) (<-chan B, <-chan error) {
out := make(chan B, cap(in))
exx := make(chan error, 1)
go func() {
defer close(out)
defer close(exx)
var (
a A
val B
err error
)
for a = range in {
val, err = fmap(a)
if err != nil {
exx <- err
return
}
select {
case out <- val:
case <-ctx.Done():
return
}
}
}()
return out, exx
}
// Partition channel into two channels according to predicate
func Partition[A any](ctx context.Context, in <-chan A, f func(A) bool) (<-chan A, <-chan A) {
lout := make(chan A, cap(in))
rout := make(chan A, cap(in))
go func() {
defer close(rout)
defer close(lout)
sel := func(x bool) chan<- A {
if x {
return lout
}
return rout
}
var a A
for a = range in {
select {
case sel(f(a)) <- a:
case <-ctx.Done():
return
}
}
}()
return lout, rout
}
// Unfold is the fundamental recursive constructor, it applies a function to
// each previous seed element in turn to determine the next element.
func Unfold[A any](ctx context.Context, cap int, seed A, f func(A) (A, error)) (<-chan A, <-chan error) {
out := make(chan A, cap)
exx := make(chan error, 1)
go func() {
defer close(out)
defer close(exx)
var err error
for {
select {
case out <- seed:
case <-ctx.Done():
return
}
seed, err = f(seed)
if err != nil {
exx <- err
return
}
}
}()
return out, exx
}
// Join concatenate channels, returns newly-allocated channel composed of
// elements copied from input channels.
func Join[A any](ctx context.Context, in ...<-chan A) <-chan A {
var wg sync.WaitGroup
out := make(chan A, len(in))
join := func(c <-chan A) {
defer wg.Done()
for x := range c {
select {
case out <- x:
case <-ctx.Done():
return
}
}
}
wg.Add(len(in))
for _, c := range in {
go join(c)
}
go func() {
wg.Wait()
close(out)
}()
return out
}
// returns a newly-allocated channel containing the first n elements of the input channel.
func Take[A any](ctx context.Context, in <-chan A, n int) <-chan A {
out := make(chan A, cap(in))
go func() {
defer close(out)
var a A
for a = range in {
select {
case out <- a:
case <-ctx.Done():
return
}
n--
if n == 0 {
return
}
}
}()
return out
}
// Filter returns a newly-allocated channel that contains only those elements x
// of the input channel for which predicate is true.
func TakeWhile[A any](ctx context.Context, in <-chan A, f func(A) bool) <-chan A {
out := make(chan A, cap(in))
go func() {
defer close(out)
var a A
for a = range in {
if !f(a) {
return
}
select {
case out <- a:
case <-ctx.Done():
return
}
}
}()
return out
}
// Throttling the channel to ops per time interval.
func Throttling[A any](ctx context.Context, in <-chan A, ops int, interval time.Duration) <-chan A {
out := make(chan A, cap(in))
ctl := make(chan struct{}, ops)
go func() {
defer close(ctl)
for {
for i := 0; i < ops; i++ {
select {
case ctl <- struct{}{}:
case <-ctx.Done():
return
}
}
select {
case <-time.After(interval):
case <-ctx.Done():
return
}
}
}()
go func() {
defer close(out)
var a A
for a = range in {
select {
case <-ctl:
case <-ctx.Done():
return
}
select {
case out <- a:
case <-ctx.Done():
return
}
}
}()
return out
}
// Lift sequence of values into channel
func Seq[T any](xs ...T) <-chan T {
out := make(chan T, len(xs))
for _, x := range xs {
out <- x
}
close(out)
return out
}
// ToSeq collects elements of channel into the sequence (slice)
func ToSeq[T any](ch <-chan T) []T {
seq := make([]T, 0)
for x := range ch {
seq = append(seq, x)
}
return seq
}
// Standard error logger
func StdErr[T any](out <-chan T, exx <-chan error) <-chan T {
go func() {
var err error
for err = range exx {
if err != nil {
slog.Error("pipe stage failed.", "error", err)
}
}
}()
return out
}