-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha_zero.py
971 lines (787 loc) · 30.9 KB
/
alpha_zero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# Lint as: python3
"""Pseudocode description of the MuZero algorithm.
https://github.com/fnclovers/Minimal-AlphaZero"""
# pylint: disable=unused-argument
# pylint: disable=missing-docstring
# pylint: disable=g-explicit-length-test
import collections
import typing
import os
from typing import Any, Dict, List, Optional
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import torch
from torch import optim, nn
from torch.nn import functional as F
import pickle as pkl
import os
import torch.multiprocessing as mp
import time
import resource
##########################
####### Helpers ##########
MAXIMUM_FLOAT_VALUE = float("inf")
USE_GPU = torch.cuda.is_available()
DEVICE = "cuda" if USE_GPU else "cpu"
torch.set_num_threads(1)
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
mp.set_sharing_strategy("file_system")
torch.set_float32_matmul_precision("high")
KnownBounds = collections.namedtuple("KnownBounds", ["min", "max"])
class MinMaxStats:
"""A class that holds the min-max values of the tree."""
def __init__(self, known_bounds: Optional[KnownBounds]):
self.maximum = known_bounds.max if known_bounds else -MAXIMUM_FLOAT_VALUE
self.minimum = known_bounds.min if known_bounds else MAXIMUM_FLOAT_VALUE
def update(self, value: float):
self.maximum = max(self.maximum, value)
self.minimum = min(self.minimum, value)
def normalize(self, value: float) -> float:
if self.maximum > self.minimum:
# We normalize only when we have set the maximum and minimum values.
return (value - self.minimum) / (self.maximum - self.minimum)
return value
class MuZeroConfig:
def __init__(
self,
action_space_size: int,
max_moves: int,
discount: float,
dirichlet_alpha: float,
num_simulations: int,
batch_size: int,
td_steps: int,
num_actors: int,
lr_init: float,
lr_decay_steps: float,
visit_softmax_temperature_fn,
known_bounds: Optional[KnownBounds] = None,
):
### Self-Play
self.action_space_size = action_space_size
self.num_actors = num_actors
self.visit_softmax_temperature_fn = visit_softmax_temperature_fn
self.max_moves = max_moves
self.num_simulations = num_simulations
self.discount = discount
# Root prior exploration noise.
self.root_dirichlet_alpha = dirichlet_alpha
self.root_exploration_fraction = 0.25
# UCB formula
self.pb_c_base = 19652
self.pb_c_init = 1.25
self.exploration_constant = 1
# If we already have some information about which values occur in the
# environment, we can use them to initialize the rescaling.
# This is not strictly necessary, but establishes identical behaviour to
# AlphaZero in board games.
self.known_bounds = known_bounds
### Training
self.save_path = "muzero.pkl"
self.training_steps = int(1000)
self.batch_training_steps = int(10)
self.window_size = int(1e6)
self.batch_size = batch_size
self.num_unroll_steps = 5
self.td_steps = td_steps
self.optimizer = "SGD"
self.weight_decay = 1e-4
self.momentum = 0.9
# Exponential learning rate schedule
self.lr_init = lr_init
self.lr_decay_rate = 0.1
self.lr_decay_steps = lr_decay_steps
def new_game(self):
return Game(self.action_space_size, self.discount)
def make_board_game_config(
action_space_size: int, max_moves: int, dirichlet_alpha: float, lr_init: float
) -> MuZeroConfig:
def visit_softmax_temperature(num_moves, training_steps):
if num_moves < 30:
return 1.0
else:
return 0.0 # Play according to the max.
return MuZeroConfig(
action_space_size=action_space_size,
max_moves=max_moves,
discount=1.0,
dirichlet_alpha=dirichlet_alpha,
num_simulations=800,
batch_size=2048,
td_steps=max_moves, # Always use Monte Carlo return.
num_actors=3000,
lr_init=lr_init,
lr_decay_steps=400e3,
visit_softmax_temperature_fn=visit_softmax_temperature,
known_bounds=KnownBounds(-1, 1),
)
def make_go_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=362, max_moves=722, dirichlet_alpha=0.03, lr_init=0.01
)
def make_chess_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=4672, max_moves=512, dirichlet_alpha=0.3, lr_init=0.1
)
def make_shogi_config() -> MuZeroConfig:
return make_board_game_config(
action_space_size=11259, max_moves=512, dirichlet_alpha=0.15, lr_init=0.1
)
def make_atari_config() -> MuZeroConfig:
def visit_softmax_temperature(num_moves, training_steps):
if training_steps < 500e3:
return 1.0
elif training_steps < 750e3:
return 0.5
else:
return 0.25
return MuZeroConfig(
action_space_size=18,
max_moves=27000, # Half an hour at action repeat 4.
discount=0.997,
dirichlet_alpha=0.25,
num_simulations=50,
batch_size=1024,
td_steps=10,
num_actors=350,
lr_init=0.05,
lr_decay_steps=350e3,
visit_softmax_temperature_fn=visit_softmax_temperature,
)
class Action:
def __init__(self, index: int):
self.index = index
def __hash__(self):
return self.index
def __eq__(self, other):
return self.index == other.index
def __gt__(self, other):
return self.index > other.index
def __index__(self):
return self.index
class Player:
def __eq__(self, other):
return True
class Node:
def __init__(self, prior: float):
self.visit_count = 0
self.to_play = -1
self.prior = prior
self.value_sum = 0
self.children = {}
self.hidden_state = None
self.reward = 0
def expanded(self) -> bool:
return len(self.children) > 0
def value(self) -> float:
if self.visit_count == 0:
return 0
return self.value_sum / self.visit_count
class ActionHistory:
"""Simple history container used inside the search.
Only used to keep track of the actions executed.
"""
def __init__(self, history: List[Action], action_space_size: int):
self.history = list(history)
self.action_space_size = action_space_size
def clone(self):
return ActionHistory(self.history, self.action_space_size)
def add_action(self, action: Action):
self.history.append(action)
def last_action(self) -> Action:
return self.history[-1]
def action_space(self) -> List[Action]:
return [Action(i) for i in range(self.action_space_size)]
def to_play(self, state_index: int = None) -> Player:
return Player()
class Environment:
"""The environment MuZero is interacting with."""
def step(self, action):
pass
class Game:
"""A single episode of interaction with the environment."""
def __init__(self, action_space_size: int, discount: float):
self.environment = Environment() # Game specific environment.
# history of prev actions; used for recurrent inference for training
self.history = []
# rewards of prev actions; used for training dynamics network
self.rewards = []
# child visit probabilities; used for training policy network
self.child_visits = []
self.root_values = []
self.action_space_size = action_space_size
self.discount = discount
def terminal(self) -> bool:
# Game specific termination rules.
pass
def legal_actions(self) -> List[Action]:
# Game specific calculation of legal actions.
return []
def apply(self, action: Action):
reward = self.environment.step(action)
self.rewards.append(reward)
self.history.append(action)
def store_search_statistics(self, root: Node):
sum_visits = sum(child.visit_count for child in root.children.values())
action_space = (Action(index) for index in range(self.action_space_size))
self.child_visits.append(
[
root.children[a].visit_count / sum_visits if a in root.children else 0
for a in action_space
]
)
self.root_values.append(root.value())
def make_image(self, state_index: int):
# Game specific feature planes.
return []
def make_target(self, state_index: int, num_unroll_steps: int, td_steps: int):
""" The value target is the discounted root value of the search tree N steps
into the future, plus the discounted sum of all rewards until then.
"""
targets = []
for current_index in range(state_index, state_index + num_unroll_steps + 1):
bootstrap_index = current_index + td_steps
if bootstrap_index < len(self.root_values):
value = self.root_values[bootstrap_index] * self.discount**td_steps
else:
value = 0
for i, reward in enumerate(self.rewards[current_index:bootstrap_index]):
value += (
reward * self.discount**i
) # pytype: disable=unsupported-operands
if current_index > 0 and current_index <= len(self.rewards):
last_reward = self.rewards[current_index - 1]
else:
last_reward = 0
if current_index < len(self.root_values):
# 1) image[n] --> pred[n], value[n], hidden_state[n]
# 2) hidden_state[n] + action[n] --> reward[n], pred[n+1], value[n+1], hidden_state[n+1]
targets.append(
(value, last_reward, self.child_visits[current_index], True)
)
else:
# States past the end of games are treated as absorbing states.
targets.append(
(value, last_reward, [0] * self.action_space_size, False)
)
return targets
def to_play(self, state_index: int = None) -> Player:
return Player()
def action_history(self) -> ActionHistory:
return ActionHistory(self.history, self.action_space_size)
def print_game(self, state_index: int):
pass
def get_score(self, state_index: int):
return len(self.history)
class ReplayBuffer:
def __init__(self, config: MuZeroConfig):
self.window_size = config.window_size
self.batch_size = config.batch_size
self.buffer = []
def save_game(self, game):
if len(self.buffer) > self.window_size:
self.buffer = self.buffer[-self.window_size :]
self.buffer.append(game)
def sample_batch(self, num_unroll_steps: int, td_steps: int):
games = self.sample_game(self.batch_size)
game_pos = self.sample_position(games)
batch = [
(
g.make_image(i),
g.history[i : i + num_unroll_steps],
g.make_target(i, num_unroll_steps, td_steps),
g.to_play(i),
)
for (g, i) in game_pos
]
return batch
def sample_game(self, n: int) -> Game:
# Sample game from buffer either uniformly or according to some priority.
return np.random.choice(self.buffer, n)
def sample_position(self, games) -> int:
# Sample position from game either uniformly or according to some priority.
return [(g, np.random.choice(len(g.history))) for g in games]
class NetworkOutput(typing.NamedTuple):
value: np.ndarray
reward: np.ndarray
policy_logits: np.ndarray
hidden_state: Any
class Network:
def __init__(self):
self.n_training_steps = 0
def initial_inference(self, image, player) -> NetworkOutput:
# representation + prediction function
return NetworkOutput(0, 0, {}, [])
def recurrent_inference(self, hidden_state, action) -> NetworkOutput:
# dynamics + prediction function
return NetworkOutput(0, 0, {}, [])
def get_weights(self):
# Returns the weights of this network.
return []
def set_weights(self, weights):
# Sets the weights of this network.
pass
def training_steps(self) -> int:
# How many steps / batches the network has been trained for.
return self.n_training_steps
def increment_training_steps(self):
self.n_training_steps += 1
def update_weights(
self,
config: MuZeroConfig,
optimizer: optim.Optimizer,
batch,
):
# Update the weights of this network given a batch of data.
return 0
def make_network(config: MuZeroConfig, training: bool) -> Network:
return Network()
class SharedStorage:
def __init__(self, config: MuZeroConfig):
self.config = config
self._weights = {}
def latest_network(self, training=True) -> Network:
if self._weights:
new_network = make_network(self.config, training=training)
new_network.set_weights(self._weights[max(self._weights.keys())])
return new_network
else:
return make_network(self.config, training=training)
def save_network(self, step: int, weights):
self._weights = {}
self._weights[step] = weights
##### End Helpers ########
##########################
# MuZero training is split into two independent parts: Network training and
# self-play data generation.
# These two parts only communicate by transferring the latest network checkpoint
# from the training to the self-play, and the finished games from the self-play
# to the training.
def muzero(config: MuZeroConfig):
storage = SharedStorage(config)
replay_buffer = ReplayBuffer(config)
for _ in range(config.num_actors):
run_selfplay(config, storage, replay_buffer)
train_network(config, storage, replay_buffer)
return storage.latest_network()
##################################
####### Part 1: Self-Play ########
# Each self-play job is independent of all others; it takes the latest network
# snapshot, produces a game and makes it available to the training job by
# writing it to a shared replay buffer.
def run_selfplay(
config: MuZeroConfig, storage: SharedStorage, replay_buffer: ReplayBuffer
):
while True:
network = storage.latest_network(training=False)
game = play_game(config, network)
replay_buffer.save_game(game)
# Each game is produced by starting at the initial board position, then
# repeatedly executing a Monte Carlo Tree Search to generate moves until the end
# of the game is reached.
def play_game(config: MuZeroConfig, network: Network) -> Game:
game = config.new_game()
while not game.terminal() and len(game.history) < config.max_moves:
game, action = predict_action(config, network, game)
game.apply(action)
return game
def predict_action(
config: MuZeroConfig, network: Network, game: Game, print: bool = False
) -> Game:
min_max_stats = MinMaxStats(config.known_bounds)
root = Node(0)
current_observation = game.make_image(-1)
network_output = network.initial_inference(current_observation, game.to_play())
expand_node(root, game.to_play(), game.legal_actions(), network_output)
backpropagate(
[root],
network_output.value,
game.to_play(),
config.discount,
min_max_stats,
)
add_exploration_noise(config, root)
# We then run a Monte Carlo Tree Search using only action sequences and the
# model learned by the network.
run_mcts(config, root, game.action_history(), network, min_max_stats)
action = select_action(config, len(game.history), root, network)
game.store_search_statistics(root)
if print:
print_node(config, game, root, min_max_stats, max_depth=2)
return game, action
# Core Monte Carlo Tree Search algorithm.
# To decide on an action, we run N simulations, always starting at the root of
# the search tree and traversing the tree according to the UCB formula until we
# reach a leaf node.
def run_mcts(
config: MuZeroConfig,
root: Node,
action_history: ActionHistory,
network: Network,
min_max_stats: MinMaxStats,
):
for _ in range(config.num_simulations):
history = action_history.clone()
node = root
search_path = [node]
while node.expanded():
action, node = select_child(config, node, min_max_stats)
history.add_action(action)
search_path.append(node)
# Inside the search tree we use the dynamics function to obtain the next
# hidden state given an action and the previous hidden state.
parent = search_path[-2]
network_output = network.recurrent_inference(
parent.hidden_state, history.last_action()
)
expand_node(node, history.to_play(), history.action_space(), network_output)
backpropagate(
search_path,
network_output.value,
history.to_play(),
config.discount,
min_max_stats,
)
def softmax_sample(distribution, temperature: float):
# if temperature is 0, then we always select the action with the highest probability
if temperature == 0:
index = np.argmax([p for p, _ in distribution])
return distribution[index]
policy = np.array([p for p, _ in distribution])
policy = np.exp((policy - policy.max()) / temperature)
policy /= policy.sum()
index = np.random.choice(len(distribution), p=policy)
return distribution[index]
def select_action(config: MuZeroConfig, num_moves: int, node: Node, network: Network):
# if True:
# # select the action with the highest value
# return max(node.children.items(), key=lambda act_node: act_node[1].value())[0]
visit_counts = [
(child.visit_count, action) for action, child in node.children.items()
]
t = config.visit_softmax_temperature_fn(
num_moves=num_moves, training_steps=network.training_steps()
)
_, action = softmax_sample(visit_counts, t)
return action
# Select the child with the highest UCB score.
def select_child(config: MuZeroConfig, node: Node, min_max_stats: MinMaxStats):
_, action, child = max(
(sum(ucb_score(config, node, child, min_max_stats)), action, child)
for action, child in node.children.items()
)
return action, child
# The score for a node is based on its value, plus an exploration bonus based on
# the prior.
def ucb_score(
config: MuZeroConfig, parent: Node, child: Node, min_max_stats: MinMaxStats
) -> float:
pb_c = (
np.log((parent.visit_count + config.pb_c_base + 1) / config.pb_c_base)
+ config.pb_c_init
)
pb_c *= np.sqrt(parent.visit_count) / (child.visit_count + 1)
prior_score = pb_c * child.prior
if child.visit_count > 0:
value_score = child.reward + config.discount * child.value()
if parent.to_play != child.to_play:
value_score = -value_score
value_score = min_max_stats.normalize(value_score)
else:
value_score = min_max_stats.normalize(parent.value())
exploration_score = config.exploration_constant * np.sqrt(
2 * np.log(parent.visit_count) / (child.visit_count + 1)
)
return prior_score, value_score, exploration_score
# We expand a node using the value, reward and policy prediction obtained from
# the neural network.
def expand_node(
node: Node, to_play: Player, actions: List[Action], network_output: NetworkOutput
):
node.to_play = to_play
node.hidden_state = network_output.hidden_state
node.reward = network_output.reward
policy = [network_output.policy_logits[actions[i]] for i in range(len(actions))]
policy = np.array(policy, dtype=np.float32)
# remove infinities
policy[policy > 10000] = 10000
policy[policy < -10000] = -10000
policy = np.exp(policy - np.max(policy))
policy_sum = np.sum(policy)
for i in range(len(actions)):
node.children[actions[i]] = Node(policy[i] / policy_sum)
# At the end of a simulation, we propagate the evaluation all the way up the
# tree to the root.
def backpropagate(
search_path: List[Node],
value: float,
to_play: Player,
discount: float,
min_max_stats: MinMaxStats,
):
for node in reversed(search_path):
node.value_sum += value if node.to_play == to_play else -value
node.visit_count += 1
min_max_stats.update(node.value())
# value = curr_reward + discount * next_reward + discount^2 * next_next_reward + ...
value = node.reward + discount * value
# At the start of each search, we add dirichlet noise to the prior of the root
# to encourage the search to explore new actions.
def add_exploration_noise(config: MuZeroConfig, node: Node):
actions = list(node.children.keys())
noise = np.random.dirichlet([config.root_dirichlet_alpha] * len(actions))
frac = config.root_exploration_fraction
for a, n in zip(actions, noise):
node.children[a].prior = node.children[a].prior * (1 - frac) + n * frac
# Prints the information of a MCTS node for debugging purposes
def print_node(
config: MuZeroConfig,
game: Game,
parent: Node,
min_max_stats: MinMaxStats,
child: Node = None,
depth: int = 0,
string: str = "",
max_depth: int = 3,
):
if depth > max_depth:
return
if child is not None:
prior_score, value_score, exploration_score = ucb_score(
config, parent, child, min_max_stats
)
# print Node ||| MTCS Stat (value, visit_count, prior) ||| UCB Score (prior_score, value_score, exploration_score)
print(
f"{' ' * depth}Node[{string}]: {child.value():.2f} | {child.visit_count} | {100 * child.prior:.2f} ||| {100 * prior_score:.2f} | {100 * value_score:.2f} | {100 * exploration_score:.2f}"
)
parent = child
else:
# root node
game.print_game(-1)
print(f"{' ' * depth}Node: {parent.value():.2f} | {parent.visit_count}")
for action, child in parent.children.items():
new_string = string
if len(new_string) > 0:
new_string += ">"
new_string += str(action)
if child.expanded():
print_node(
config,
game,
parent,
min_max_stats,
child,
depth + 1,
new_string,
max_depth,
)
# Main function to play MuZero
def play_muzero(config: MuZeroConfig, selfplay: bool = False):
# load the latest network, games
if os.path.exists(config.save_path):
with open(config.save_path, "rb") as f:
data = pkl.load(f)
storage = data["storage"]
replay_buffer = data["replay_buffer"]
games_updated = data["games_updated"]
games_trained = data["games_trained"]
# replay_buffer.buffer = []
print(
f"Loaded from {config.save_path}: {games_updated} games updated, {games_trained} games trained"
)
# see how many score the last game got
last_game = replay_buffer.buffer[-1]
for i in range(len(last_game.history)):
print(f"Action probabilities: ", end="")
action_prob = last_game.child_visits[i]
for j in range(config.action_space_size):
print(f"{action_prob[j] * 100:.2f}", end=" ")
print()
last_game.print_game(i)
else:
storage = SharedStorage(config)
replay_buffer = ReplayBuffer(config)
network = storage.latest_network(training=False)
game = config.new_game()
score = 0
while not game.terminal():
network_output = network.initial_inference(game.make_image(-1), game.to_play())
game, action = predict_action(config, network, game, True)
net_prob = np.exp(
network_output.policy_logits - np.max(network_output.policy_logits)
)
net_prob = net_prob / np.sum(net_prob)
print(f"Game score: {score}")
print(f"Value: {game.root_values[-1]:.2f}({network_output.value:.2f})")
print(f"Action probabilities: ", end="")
action_prob = game.child_visits[-1]
for i in range(config.action_space_size):
print(
f"{action_prob[i] * 100:.2f}({i + 1}, {net_prob[i] * 100:.2f})", end=" "
)
print()
game.print_game(-1)
print()
if selfplay:
next_action = action
else:
while True:
try:
next_action = input(
f"Enter action (1 ~ {config.action_space_size}): "
)
if next_action == "q":
os._exit(0)
next_action = int(next_action) - 1
if not 0 <= next_action < config.action_space_size:
raise ValueError
next_action = Action(next_action)
break
except:
print("Invalid input")
pass
game.apply(next_action)
score += game.rewards[-1]
exit()
######### End Self-Play ##########
##################################
##################################
####### Part 2: Training #########
def train_network(config: MuZeroConfig, network: Network, replay_buffer: ReplayBuffer):
training_steps = network.training_steps()
learning_rate = config.lr_init * config.lr_decay_rate ** (
training_steps / config.lr_decay_steps
)
if config.optimizer == "SGD":
optimizer = optim.SGD(
network.parameters(),
lr=learning_rate,
momentum=config.momentum,
weight_decay=config.weight_decay,
)
elif config.optimizer == "Adam":
optimizer = optim.Adam(
network.parameters(),
lr=learning_rate,
weight_decay=config.weight_decay,
)
avg_loss = 0
for _ in range(config.training_steps):
batch = replay_buffer.sample_batch(config.num_unroll_steps, config.td_steps)
for _ in range(config.batch_training_steps):
avg_loss += network.update_weights(config, optimizer, batch)
print(f"Loss: {avg_loss / config.training_steps / config.batch_training_steps}")
return network
def play_game_processor(GAME_QUEUE, config, network):
start_time = time.time()
game = play_game(config, network)
end_time = time.time()
print(f"Game time: {end_time - start_time:.2f}")
GAME_QUEUE.put(game)
# wait until queue is empty
GAME_QUEUE.join()
def train_network_processor(NETWORK_QUEUE, config, network, replay_buffer):
start_time = time.time()
network = train_network(config, network, replay_buffer)
end_time = time.time()
print(f"Training time: {end_time - start_time:.2f}")
network.cpu()
NETWORK_QUEUE.put(network.get_weights())
# wait until queue is empty
NETWORK_QUEUE.join()
def train_muzero(config: MuZeroConfig):
global USE_GPU, DEVICE
games_updated = 0
games_trained = 0
if os.path.exists(config.save_path):
with open(config.save_path, "rb") as f:
data = pkl.load(f)
storage = data["storage"]
replay_buffer = data["replay_buffer"]
games_updated = data["games_updated"]
games_trained = data["games_trained"]
print(
f"Loaded from {config.save_path}: {games_updated} games updated, {games_trained} games trained"
)
else:
storage = SharedStorage(config)
replay_buffer = ReplayBuffer(config)
# use multiple processes to collect training data
mp.set_start_method("spawn")
GAME_QUEUE = mp.JoinableQueue(128 * 1024 * 1024)
TRAINING_QUEUE = mp.JoinableQueue(128 * 1024 * 1024)
N_CPU = config.num_workers
game_processes = []
training_processes = None
ended = False
while not ended:
# check if any processes have finished
idx = 0
while len(game_processes) > 0 and idx < len(game_processes):
if not game_processes[idx].is_alive():
game_processes[idx].join()
# destroy the process
game_processes[idx].close()
del game_processes[idx]
else:
idx += 1
# start new processes
while len(game_processes) < N_CPU and games_updated < config.num_iterations:
# self-play on CPU
USE_GPU = False
DEVICE = "cuda" if USE_GPU else "cpu"
network = storage.latest_network(training=False)
p = mp.Process(
target=play_game_processor,
args=(GAME_QUEUE, config, network),
)
p.start()
game_processes.append(p)
while not GAME_QUEUE.empty():
game = GAME_QUEUE.get()
replay_buffer.save_game(game)
games_updated += 1
print(f"Game {games_updated} score: {game.get_score(-1)}")
GAME_QUEUE.task_done()
if (
games_updated >= games_trained + config.num_actors
or games_updated >= config.num_iterations
):
if training_processes is None or not training_processes.is_alive():
# train network on GPU
print(f"Training network {games_updated}")
USE_GPU = True
DEVICE = "cuda" if USE_GPU else "cpu"
network = storage.latest_network(training=True)
training_processes = mp.Process(
target=train_network_processor,
args=(TRAINING_QUEUE, config, network, replay_buffer),
)
training_processes.start()
games_trained = games_updated
while not TRAINING_QUEUE.empty():
weights = TRAINING_QUEUE.get()
storage.save_network(games_trained, weights)
TRAINING_QUEUE.task_done()
with open(config.save_path, "wb") as f:
pkl.dump(
{
"storage": storage,
"replay_buffer": replay_buffer,
"games_updated": games_updated,
"games_trained": games_trained,
},
f,
)
print(f"Trained network {games_trained}")
if games_trained >= config.num_iterations:
ended = True
time.sleep(1)
######### End Training ###########
##################################
################################################################################
############################# End of pseudocode ################################
################################################################################