forked from rdpeng/ProgrammingAssignment2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcachematrix.R
94 lines (80 loc) · 1.83 KB
/
cachematrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#
# Matrix inversion is usually a costly computation and there may be some benefit
# to caching the inverse of a matrix rather than compute it repeatedly.
# These functions help creating instances of "special matrix" that allow to cache
# the inverted matrix so that multiple request for the inverted matrix won't
# systematically retrigger the entire matrix inversion (CPU intensive) process.
#
# This function creates a special "matrix" object that can cache its inverse.
makeCacheMatrix <- function(x = matrix()) {
i <- NULL
set <- function(y) {
x <<- y
inv <<- NULL
}
get <- function() x
setinv <- function(inv) i <<- inv
getinv <- function() i
list(
set = set,
get = get,
setinv = setinv,
getinv = getinv
)
}
# This function computes the inverse of the special "matrix" returned by
# makeCacheMatrix above. If the inverse has already been calculated
# (and the matrix has not changed), then the cachesolve should retrieve
# the inverse from the cache.
cacheSolve <- function(x, ...) {
## Return a matrix that is the inverse of 'x'
i <- x$getinv()
if(!is.null(i)) {
message("getting cached data")
return(i)
}
data <- x$get()
i <- solve(data, ...)
x$setinv(i)
i
}
#
# to test (example)
#
# > a = matrix(c(1, 2, 3, 4), 2, 2)
# > a
# [,1] [,2]
# [1,] 1 3
# [2,] 2 4
#
# > b = solve(a)
# > b
# [,1] [,2]
# [1,] -2 1.5
# [2,] 1 -0.5
#
# > a %*% b
# [,1] [,2]
# [1,] 1 0
# [2,] 0 1
#
#### source(...) !! use appropriate path to cachematrix.R source file in your env
#
# > a_better <- makeCacheMatrix(a)
#
# > a_better$get()
# [,1] [,2]
# [1,] 1 3
# [2,] 2 4
#
# > cacheSolve(a_better)
# [,1] [,2]
# [1,] -2 1.5
# [2,] 1 -0.5
#
# > cacheSolve(a_better)
# getting cached data
# [,1] [,2]
# [1,] -2 1.5
# [2,] 1 -0.5
#