88- [ Task] ( #task )
99 - [ Image] ( #image )
1010 - [ Image Classification] ( #image-classification )
11+ - [ Multi Image Classification] ( #multi-image-classification )
1112 - [ Sequential Image] ( #sequential-image )
1213 - [ Video] ( #video )
1314 - [ Video Classification] ( #video-classification )
3233 - [ YOLO To FastLabel] ( #yolo-to-fastlabel )
3334 - [ Pascal VOC To FastLabel] ( #pascal-voc-to-fastlabel )
3435 - [ labelme To FastLabel] ( #labelme-to-fastlabel )
36+ - [ Mask To FastLabel Segmentation Points] ( #mask-to-fastlabel-segmentation-points )
3537- [ Model] ( #model )
3638- [ API Docs] ( #api-docs )
3739
@@ -558,6 +560,128 @@ Example of a single image classification task object
558560}
559561```
560562
563+ ### Multi Image Classification
564+
565+ Supported following project types:
566+
567+ - Multi Image - Classification
568+
569+ #### Create Task
570+
571+ Create a new task.
572+
573+ ``` python
574+ task = client.create_multi_image_classification_task(
575+ project = " YOUR_PROJECT_SLUG" ,
576+ name = " sample" ,
577+ folder_path = " ./sample" ,
578+ priority = 10 , # (optional) none: 0, low: 10, medium: 20, high: 30
579+ attributes = [
580+ {
581+ " type" : " text" ,
582+ " key" : " attribute-key" ,
583+ " value" : " attribute-value"
584+ }
585+ ]
586+ )
587+ ```
588+
589+ ##### Limitation
590+
591+ - You can upload up to a size of 20 MB.
592+ - You can upload up to a total size of 2 GB.
593+ - You can upload up to 6 files in total.
594+
595+ #### Find Task
596+
597+ Find a single task.
598+
599+ ``` python
600+ task = client.find_multi_image_classification_task(task_id = " YOUR_TASK_ID" )
601+ ```
602+
603+ Find a single task by name.
604+
605+ ``` python
606+ tasks = client.find_multi_image_classification_task_by_name(project = " YOUR_PROJECT_SLUG" , task_name = " YOUR_TASK_NAME" )
607+ ```
608+
609+ #### Get Tasks
610+
611+ Get tasks.
612+
613+ ``` python
614+ tasks = client.get_multi_image_classification_tasks(project = " YOUR_PROJECT_SLUG" )
615+ ```
616+
617+ #### Update Task
618+
619+ Update a single task.
620+
621+ ``` python
622+ task_id = client.update_multi_image_classification_task(
623+ task_id = " YOUR_TASK_ID" ,
624+ status = " approved" ,
625+ assignee = " USER_SLUG" ,
626+ tags = [" tag1" , " tag2" ],
627+ priority = 10 , # (optional) none: 0, low: 10, medium: 20, high: 30
628+ attributes = [
629+ {
630+ " type" : " text" ,
631+ " key" : " attribute-key" ,
632+ " value" : " attribute-value"
633+ }
634+ ]
635+ )
636+ ```
637+
638+ #### Response
639+
640+ Example of a single task object
641+
642+ ``` python
643+ {
644+ " id" : " YOUR_TASK_ID" ,
645+ " name" : " sample" ,
646+ " contents" : [
647+ {
648+ " name" : " content-name-1" ,
649+ " url" : " content-url-1" ,
650+ " width" : 100 ,
651+ " height" : 100 ,
652+ },
653+ {
654+ " name" : " content-name-2" ,
655+ " url" : " content-url-2" ,
656+ " width" : 100 ,
657+ " height" : 100 ,
658+ }
659+ ],
660+ " status" : " registered" ,
661+ " externalStatus" : " registered" ,
662+ " priority" : 10 ,
663+ " tags" : [],
664+ " assignee" : " ASSIGNEE_NAME" ,
665+ " reviewer" : " REVIEWER_NAME" ,
666+ " externalAssignee" : " EXTERNAL_ASSIGNEE_NAME" ,
667+ " externalReviewer" : " EXTERNAL_REVIEWER_NAME" ,
668+ " attributes" : [
669+ {
670+ " type" : " text" ,
671+ " key" : " attribute-key-1" ,
672+ " value" : " attribute-value-1"
673+ },
674+ {
675+ " type" : " text" ,
676+ " key" : " attribute-key-2" ,
677+ " value" : " attribute-value-2"
678+ }
679+ ],
680+ " createdAt" : " 2021-02-22T11:25:27.158Z" ,
681+ " updatedAt" : " 2021-02-22T11:25:27.158Z"
682+ }
683+ ```
684+
561685### Sequential Image
562686
563687Supported following project types:
@@ -2510,6 +2634,7 @@ dataset_object = client.create_dataset_object(
25102634 ],
25112635 " attributes" : [
25122636 {
2637+ " type" : " text" ,
25132638 " value" : " Scottish field" ,
25142639 " key" : " kind"
25152640 }
@@ -2530,6 +2655,32 @@ dataset_object = client.create_dataset_object(
25302655)
25312656```
25322657
2658+ If you would like to create a new dataset object with classification type annotations, please pass empty points and value of the annotation named 'classification'.
2659+
2660+ ``` python
2661+ dataset_object = client.create_dataset_object(
2662+ dataset = " YOUR_DATASET_NAME" ,
2663+ name = " brushwood_dog.jpg" ,
2664+ file_path = " ./brushwood_dog.jpg" ,
2665+ tags = [" dog" ], # max 5 tags per dataset object.
2666+ licenses = [" MIT" , " my-license" ], # max 10 licenses per dataset object
2667+ annotations = [
2668+ {
2669+ " type" : " classification" ,
2670+ " value" : " classification" ,
2671+ " points" : [],
2672+ " attributes" : [
2673+ {
2674+ " type" : " text" ,
2675+ " value" : " Scottish field" ,
2676+ " key" : " kind"
2677+ }
2678+ ]
2679+ }
2680+ ]
2681+ )
2682+ ```
2683+
25332684#### Response Dataset Object
25342685
25352686See API docs for details.
@@ -2671,6 +2822,7 @@ client.download_dataset_objects(
26712822```
26722823
26732824### Update Dataset Object
2825+
26742826``` python
26752827dataset_object = client.update_dataset_object(
26762828 dataset_id = " YOUR_DATASET_ID" ,
@@ -2819,7 +2971,7 @@ Only support the following annotation types.
28192971
28202972- bbox
28212973- polygon
2822- - segmentation (Hollowed points are not supported.)
2974+ - segmentation
28232975
28242976``` python
28252977tasks = client.get_image_tasks(project = " YOUR_PROJECT_SLUG" )
@@ -3057,6 +3209,16 @@ for image_file_path in glob.iglob(os.path.join(input_dataset_path, "**/**.jpg"),
30573209
30583210> Please check const.COLOR_PALLETE for index colors.
30593211
3212+ ### Mask To FastLabel Segmentation Points
3213+
3214+ Convert mask image to FastLabel's segmentation coordinate format.
3215+
3216+ ``` python
3217+ points = client.mask_to_fastlabel_segmentation_points(
3218+ mask_image = binary_image_path (or binary_image_array)
3219+ )
3220+ ```
3221+
30603222## Model
30613223
30623224### Get training jobs
0 commit comments