forked from Akshaya-Amar/LeetCodeSolutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixDiagonalSum.cpp
46 lines (32 loc) · 1.05 KB
/
MatrixDiagonalSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
Source: https://leetcode.com/problems/matrix-diagonal-sum/
Time: O(n), where n is the length of the given matrix array
Space: O(1), in-place
*/
class Solution {
public:
int diagonalSum(vector<vector<int>>& mat) {
int n = mat.size() - 1;
int sum = 0;
for(int i = 0; i <= n; ++i) {
sum += mat[i][i] + mat[i][n - i];
}
return ((n & 1) == 0) ? (sum - mat[n >> 1][n >> 1]) : sum;
}
};
/*
Here, return ((n & 1) == 0) ? (sum - mat[n >> 1][n >> 1]) : sum; is because
if matrix length is odd, then the middle element has been added twice, so we have to subtract
that element from the sum in order to get the desired result.
NOTE: here n = mat.length - 1, so we will subtract the middle element when n is even
eg:
when matrix length = 5, then n = mat.length - 1 ==> n = 5 - 1 ==> n = 4
So, we will subtract the middle element when length is odd, but n will be even in that case
and the statement,
return ((n & 1) == 0) ? (sum - mat[n >> 1][n >> 1]) : sum;
is equivalent to
if((n % 2) == 0) {
return sum - mat[n / 2][n / 2];
}
return sum;
*/