forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
157 lines (123 loc) · 4.42 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# To build and upload a new version, follow the steps below.
# Notes:
# - this is a "Universal Wheels" package that is pure Python and supports both Python2 and Python3
# - Twine is a secure PyPi upload package
# - Make sure you have bumped the version! at ts/version.py
# $ pip install twine
# $ pip install wheel
# $ python setup.py bdist_wheel --universal
# *** TEST YOUR PACKAGE WITH TEST PI ******
# twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# If this is successful then push it to actual pypi
# $ twine upload dist/*
"""
Setup.py for the model server package
"""
import errno
import os
import subprocess
import sys
from datetime import date
from shutil import copy2, rmtree
import setuptools.command.build_py
from setuptools import setup, find_packages, Command
import ts
pkgs = find_packages()
def pypi_description():
"""
Imports the long description for the project page
"""
with open('PyPiDescription.rst') as df:
return df.read()
def detect_model_server_version():
sys.path.append(os.path.abspath("ts"))
if "--release" in sys.argv:
sys.argv.remove("--release")
return ts.__version__.strip()
return ts.__version__.strip() + 'b' + str(date.today()).replace('-', '')
class BuildFrontEnd(setuptools.command.build_py.build_py):
"""
Class defined to run custom commands.
"""
description = 'Build Model Server Frontend'
source_server_file = os.path.abspath('frontend/server/build/libs/server-1.0.jar')
dest_file_name = os.path.abspath('ts/frontend/model-server.jar')
# noinspection PyMethodMayBeStatic
def run(self):
"""
Actual method called to run the build command
:return:
"""
front_end_bin_dir = os.path.abspath('.') + '/ts/frontend'
try:
os.mkdir(front_end_bin_dir)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(front_end_bin_dir):
pass
else:
raise
if os.path.exists(self.source_server_file):
os.remove(self.source_server_file)
try:
subprocess.check_call('frontend/gradlew -p frontend clean assemble', shell=True)
except OSError:
assert 0, "build failed"
copy2(self.source_server_file, self.dest_file_name)
class BuildPy(setuptools.command.build_py.build_py):
"""
Class to invoke the custom command defined above.
"""
def run(self):
sys.stderr.flush()
self.run_command('build_frontend')
setuptools.command.build_py.build_py.run(self)
class BuildPlugins(Command):
description = 'Build Model Server Plugins'
user_options = [('plugins=', 'p', 'Plugins installed')]
source_plugin_dir = \
os.path.abspath('plugins/build/plugins')
def initialize_options(self):
self.plugins = None
def finalize_options(self):
if self.plugins is None:
print("No plugin option provided. Defaulting to 'default'")
self.plugins = "default"
# noinspection PyMethodMayBeStatic
def run(self):
if os.path.isdir(self.source_plugin_dir):
rmtree(self.source_plugin_dir)
try:
if self.plugins == "endpoints":
subprocess.check_call('plugins/gradlew -p plugins clean bS', shell=True)
else:
raise OSError("No such rule exists")
except OSError:
assert 0, "build failed"
self.run_command('build_py')
if __name__ == '__main__':
version = detect_model_server_version()
requirements = ['Pillow', 'psutil', 'future', 'packaging']
setup(
name='torchserve',
version=version,
description='TorchServe is a tool for serving neural net models for inference',
author='PyTorch Serving team',
author_email='[email protected]',
long_description=pypi_description(),
url='https://github.com/pytorch/serve.git',
keywords='TorchServe PyTorch Serving Deep Learning Inference AI',
packages=pkgs,
cmdclass={
'build_frontend': BuildFrontEnd,
'build_plugins': BuildPlugins,
'build_py': BuildPy,
},
install_requires=requirements,
entry_points={
'console_scripts': [
'torchserve=ts.model_server:start',
]
},
include_package_data=True,
license='Apache License Version 2.0'
)