|
| 1 | +{-# LANGUAGE TypeInType, GADTs, MultiParamTypeClasses, LambdaCase, |
| 2 | + TypeFamilies, TypeOperators, RankNTypes, AllowAmbiguousTypes, |
| 3 | + ScopedTypeVariables, TypeApplications #-} |
| 4 | + |
| 5 | +----------------------------------------------------------------------------- |
| 6 | +-- | |
| 7 | +-- Module : Language.Stitch.CSE |
| 8 | +-- Copyright : (C) 2018 Richard Eisenberg |
| 9 | +-- License : BSD-style (see LICENSE) |
| 10 | +-- Maintainer : Richard Eisenberg ([email protected]) |
| 11 | +-- Stability : experimental |
| 12 | +-- |
| 13 | +-- Eliminate common sub-expressions from a Stitch program |
| 14 | +-- |
| 15 | +---------------------------------------------------------------------------- |
| 16 | + |
| 17 | +module Language.Stitch.CSE ( cse ) where |
| 18 | + |
| 19 | +{- GENERAL APPROACH |
| 20 | +
|
| 21 | +We do CSE in three steps: |
| 22 | +
|
| 23 | +1. Recur through an expression. At every point in the AST with more than |
| 24 | + one subexpression (e.g., App, Cond, etc.), check to see if the same |
| 25 | + subsubexpression appears in more than subexpression. For example, |
| 26 | + App (... blah ...) (... blah ...). If so, add a new let-binding for |
| 27 | + the common subsubexpression. This is done by insertLets. |
| 28 | +
|
| 29 | +2. Recur through an expression. For every Let, remember the let-bound |
| 30 | + variable's RHS in a map. If that expression is seen, replace the expression |
| 31 | + with the let-bound variable. This is done by replaceExprs. |
| 32 | +
|
| 33 | +3. Recur through an expression. For every Let, do two things: |
| 34 | + a. If the RHS of the let-bound variable is just a variable, map the LHS to |
| 35 | + the RHS, applying the mapping to the body of the let. |
| 36 | + b. If the let-bound variable is not used in its body, remove the Let entirely. |
| 37 | + This is done in zapLets. |
| 38 | +
|
| 39 | + This last step is important because step 1 inserts a new Let for every common |
| 40 | + subsubexpression, even if there is a larger subsubexpression to be commoned |
| 41 | + up. Zapping the lets removes the cruft that step 1 might insert. Step 1 also |
| 42 | + will insert a Let at every interior node where multiple subexpressions have |
| 43 | + a subsubexpression in common; if a subsubexpression appears in *three* places, |
| 44 | + then we'll get two Lets, one at the top join and one at the lower join. (Indeed, |
| 45 | + this duplication of Lets is why we need part (a) of step 3.) |
| 46 | +-} |
| 47 | + |
| 48 | +import Language.Stitch.Type |
| 49 | +import Language.Stitch.Exp |
| 50 | +import Language.Stitch.Shift |
| 51 | +import Language.Stitch.Util |
| 52 | + |
| 53 | +import Language.Stitch.Data.Vec |
| 54 | +import Language.Stitch.Data.Exists |
| 55 | + |
| 56 | +import Data.Type.Equality |
| 57 | + |
| 58 | +import qualified Language.Stitch.Data.IHashMap.Lazy as M |
| 59 | +import qualified Language.Stitch.Data.IHashSet as S |
| 60 | +import Language.Stitch.Data.IHashable |
| 61 | + |
| 62 | +import Data.Kind |
| 63 | + |
| 64 | +-- | Perform common-subexpression elimination (CSE) |
| 65 | +cse :: KnownLength ctx => Exp ctx ty -> Exp ctx ty |
| 66 | +cse = zapLets . replaceExprs . insertLets |
| 67 | + |
| 68 | +--------------------------------------------------------------------- |
| 69 | +-- The main types for the data structures used in this file |
| 70 | + |
| 71 | +-- | A mapping from expressions in a certain context to a type indexed |
| 72 | +-- by the type of expression it is stored with |
| 73 | +type ExpMap ctx a = M.IHashMap (Exp ctx) a |
| 74 | + |
| 75 | +-- | A set of expressions in a certain context |
| 76 | +type ExpSet ctx = S.IHashSet (Exp ctx) |
| 77 | + |
| 78 | +--------------------------------------------------------------------- |
| 79 | +-- Step 1. insertLets |
| 80 | + |
| 81 | +-- | Implements Step 1 from the general description of CSE, above |
| 82 | +insertLets :: KnownLength ctx => Exp ctx ty -> Exp ctx ty |
| 83 | +insertLets = fst . go |
| 84 | + where |
| 85 | + go :: forall ctx ty. KnownLength ctx => Exp ctx ty -> (Exp ctx ty, ExpSet ctx) |
| 86 | + go e@(Var {}) = (e, S.empty) |
| 87 | + go (Lam arg_ty e1) |
| 88 | + = let (e1', all_exprs) = go e1 |
| 89 | + e' = Lam arg_ty e1' in |
| 90 | + mk_result e' [unshiftSet all_exprs] |
| 91 | + |
| 92 | + go (App e1 e2) |
| 93 | + = let (e1', all_exprs1) = go e1 |
| 94 | + (e2', all_exprs2) = go e2 |
| 95 | + e' = App e1' e2' in |
| 96 | + mk_result e' [all_exprs1, all_exprs2] |
| 97 | + |
| 98 | + go (Let e1 e2) |
| 99 | + = let (e1', all_exprs1) = go e1 |
| 100 | + (e2', all_exprs2) = go e2 |
| 101 | + e' = Let e1' e2' |
| 102 | + |
| 103 | + all_exprs2' = unshiftSet all_exprs2 in |
| 104 | + mk_result e' [all_exprs1, all_exprs2'] |
| 105 | + |
| 106 | + go (Arith e1 op e2) |
| 107 | + = let (e1', all_exprs1) = go e1 |
| 108 | + (e2', all_exprs2) = go e2 |
| 109 | + e' = Arith e1' op e2' in |
| 110 | + mk_result e' [all_exprs1, all_exprs2] |
| 111 | + |
| 112 | + go (Cond e1 e2 e3) |
| 113 | + = let (e1', all_exprs1) = go e1 |
| 114 | + (e2', all_exprs2) = go e2 |
| 115 | + (e3', all_exprs3) = go e3 |
| 116 | + e' = Cond e1' e2' e3' in |
| 117 | + mk_result e' [all_exprs1, all_exprs2, all_exprs3] |
| 118 | + |
| 119 | + go (Fix e1) |
| 120 | + = let (e1', all_exprs) = go e1 |
| 121 | + e' = Fix e1' in |
| 122 | + mk_result e' [all_exprs] |
| 123 | + |
| 124 | + go e@(IntE {}) = (e, S.empty) |
| 125 | + go e@(BoolE {}) = (e, S.empty) |
| 126 | + |
| 127 | + mk_result :: KnownLength ctx => Exp ctx ty -> [ExpSet ctx] -> (Exp ctx ty, ExpSet ctx) |
| 128 | + mk_result e all_exprss |
| 129 | + = (mkLets common_exprs e, S.insert e all_exprs) |
| 130 | + where |
| 131 | + pairs = allPairs all_exprss |
| 132 | + inters = map (uncurry S.intersection) pairs |
| 133 | + common_exprs = S.toList (S.unions inters) |
| 134 | + all_exprs = S.unions all_exprss |
| 135 | + |
| 136 | +-- | A 'ShiftedExp' represents an expression that's been shifted into a deeper |
| 137 | +-- context. Note the non-prenex kind, necessary so that Lets can be parameterized |
| 138 | +-- by a partial application of this type. |
| 139 | +newtype ShiftedExp base_ctx :: forall n. Ctx n -> Ty -> Type where |
| 140 | + ShiftedExp :: Exp (prefix +++ base_ctx) ty |
| 141 | + -> ShiftedExp base_ctx prefix ty |
| 142 | + |
| 143 | +-- | A snoc-list (the "nil" is at the left) of expressions, where later elements |
| 144 | +-- are in a deeper context than earlier ones. |
| 145 | +data Lets :: forall n. (forall m. Ctx m -> Ty -> Type) -> Ctx n -> Type where |
| 146 | + LNil :: forall (a :: forall m. Ctx m -> Ty -> Type). Lets a VNil |
| 147 | + (:<:) :: forall (a :: forall m. Ctx m -> Ty -> Type) ctx ty. |
| 148 | + Lets a ctx -> a ctx ty -> Lets a (ty :> ctx) |
| 149 | +infixl 5 :<: |
| 150 | + |
| 151 | +-- | Convert a list of expressions (of a variety of types) into a 'Lets' construct, |
| 152 | +-- in CPS-style. |
| 153 | +expsToLets :: [Ex (Exp ctx)] |
| 154 | + -> (forall n (prefix :: Ctx n). Lets (ShiftedExp ctx) prefix -> Length prefix -> r) |
| 155 | + -> r |
| 156 | +expsToLets [] k = k LNil LZ |
| 157 | +expsToLets (Ex exp : rest) k = expsToLets rest $ \ lets len -> |
| 158 | + k (lets :<: ShiftedExp (shifts len exp)) (LS len) |
| 159 | + |
| 160 | +-- | Wrap an expression in nested Lets. This version is efficient, shifting expressions |
| 161 | +-- by many levels at once. |
| 162 | +mkLets :: forall ctx ty. [Ex (Exp ctx)] -> Exp ctx ty -> Exp ctx ty |
| 163 | +mkLets exps body = expsToLets exps $ \ lets len -> go lets (shifts len body) |
| 164 | + where |
| 165 | + go :: forall n (prefix :: Ctx n) ty. |
| 166 | + Lets (ShiftedExp ctx) prefix -> Exp (prefix +++ ctx) ty -> Exp ctx ty |
| 167 | + go LNil body = body |
| 168 | + go (rest :<: ShiftedExp exp) body = go rest (Let exp body) |
| 169 | + |
| 170 | +-- | Wrap an expression in nested Lets. This version is very inefficient, doing |
| 171 | +-- lots of single shifts. |
| 172 | +_mkLetsSimple :: forall ctx ty. [Ex (Exp ctx)] -> Exp ctx ty -> Exp ctx ty |
| 173 | +_mkLetsSimple [] body = body |
| 174 | +_mkLetsSimple (Ex exp : rest) body = Let exp (shift (_mkLetsSimple rest body)) |
| 175 | + |
| 176 | +--------------------------------------------------------------------- |
| 177 | +-- Step 2. replaceExprs |
| 178 | + |
| 179 | +-- | Implements Step 2 from the general description of CSE, above |
| 180 | +replaceExprs :: KnownLength ctx => Exp ctx ty -> Exp ctx ty |
| 181 | +replaceExprs = go M.empty |
| 182 | + where |
| 183 | + go :: forall n (ctx :: Ctx n) ty. |
| 184 | + KnownLength ctx => ExpMap ctx (Elem ctx) -> Exp ctx ty -> Exp ctx ty |
| 185 | + go m e |
| 186 | + | Just v <- M.lookup e m |
| 187 | + = Var v |
| 188 | + |
| 189 | + go m (Let e1 e2) |
| 190 | + = let e1' = go m e1 |
| 191 | + m' = add_mapping (shift e1) $ add_mapping (shift e1') (shiftMap m) in |
| 192 | + Let e1' (go m' e2) |
| 193 | + |
| 194 | + go _ e@(Var {}) = e |
| 195 | + go m (Lam arg_ty e) = Lam arg_ty (go (shiftMap m) e) |
| 196 | + go m (App e1 e2) = App (go m e1) (go m e2) |
| 197 | + go m (Arith e1 op e2) = Arith (go m e1) op (go m e2) |
| 198 | + go m (Cond e1 e2 e3) = Cond (go m e1) (go m e2) (go m e3) |
| 199 | + go m (Fix e) = Fix (go m e) |
| 200 | + go _ e@(IntE {}) = e |
| 201 | + go _ e@(BoolE {}) = e |
| 202 | + |
| 203 | + add_mapping e m = insertIfAbsent e EZ m |
| 204 | + |
| 205 | +insertIfAbsent :: (TestEquality k, IHashable k) |
| 206 | + => k i -> v i -> M.IHashMap k v -> M.IHashMap k v |
| 207 | +insertIfAbsent k v m = M.alter (\case Just v0 -> Just v0 |
| 208 | + Nothing -> Just v) |
| 209 | + k m |
| 210 | +--------------------------------------------------------------------- |
| 211 | +-- Step 3. zapLets |
| 212 | + |
| 213 | +-- | Implements Step 3 from the general description of CSE, above |
| 214 | +zapLets :: KnownLength ctx => Exp ctx ty -> Exp ctx ty |
| 215 | +zapLets = fst . go M.empty |
| 216 | + where |
| 217 | + go :: forall n (ctx :: Ctx n) ty. |
| 218 | + KnownLength ctx |
| 219 | + => M.IHashMap (Elem ctx) (Elem ctx) |
| 220 | + -> Exp ctx ty |
| 221 | + -> (Exp ctx ty, S.IHashSet (Elem ctx)) |
| 222 | + |
| 223 | + go m (Let e1 e2) |
| 224 | + | Var v <- e1 |
| 225 | + = let (e2', used_vars) = go (M.insert EZ (shift v) (shiftMap m)) e2 |
| 226 | + e2'' = uncheckedUnshift e2' in |
| 227 | + (e2'', unshiftSet used_vars) |
| 228 | + |
| 229 | + | otherwise |
| 230 | + = let (e1', used_vars1) = go m e1 |
| 231 | + (e2', used_vars2) = go (shiftMap m) e2 |
| 232 | + used_vars2' = unshiftSet used_vars2 in |
| 233 | + |
| 234 | + if S.member EZ used_vars2 |
| 235 | + then (Let e1' e2', S.unions [used_vars1, used_vars2']) |
| 236 | + else (uncheckedUnshift e2', used_vars2') |
| 237 | + |
| 238 | + go m e@(Var v) |
| 239 | + | Just v' <- M.lookup v m |
| 240 | + = (Var v', S.singleton v') |
| 241 | + |
| 242 | + | otherwise |
| 243 | + = (e, S.singleton v) |
| 244 | + |
| 245 | + go m (Lam arg_ty e) |
| 246 | + = let (e', used_vars) = go (shiftMap m) e in |
| 247 | + (Lam arg_ty e', unshiftSet used_vars) |
| 248 | + |
| 249 | + go m (App e1 e2) |
| 250 | + = let (e1', used_vars1) = go m e1 |
| 251 | + (e2', used_vars2) = go m e2 in |
| 252 | + (App e1' e2', used_vars1 `S.union` used_vars2) |
| 253 | + |
| 254 | + go m (Arith e1 op e2) |
| 255 | + = let (e1', used_vars1) = go m e1 |
| 256 | + (e2', used_vars2) = go m e2 in |
| 257 | + (Arith e1' op e2', used_vars1 `S.union` used_vars2) |
| 258 | + |
| 259 | + go m (Cond e1 e2 e3) |
| 260 | + = let (e1', used_vars1) = go m e1 |
| 261 | + (e2', used_vars2) = go m e2 |
| 262 | + (e3', used_vars3) = go m e3 in |
| 263 | + (Cond e1' e2' e3', S.unions [used_vars1, used_vars2, used_vars3]) |
| 264 | + |
| 265 | + go m (Fix e) |
| 266 | + = let (e', used_vars) = go m e in |
| 267 | + (Fix e', used_vars) |
| 268 | + |
| 269 | + go _ e@(IntE {}) = (e, S.empty) |
| 270 | + go _ e@(BoolE {}) = (e, S.empty) |
| 271 | + |
| 272 | +--------------------------------------------------------- |
| 273 | +-- Shifting utilities |
| 274 | + |
| 275 | +shiftMap :: forall (a :: forall n. Ctx n -> Ty -> Type) |
| 276 | + (b :: forall n. Ctx n -> Ty -> Type) |
| 277 | + ctx ty. |
| 278 | + ( IHashable (a (ty :> ctx)), TestEquality (a (ty :> ctx)) |
| 279 | + , Shiftable a, Shiftable b ) |
| 280 | + => M.IHashMap (a ctx) (b ctx) -> M.IHashMap (a (ty :> ctx)) (b (ty :> ctx)) |
| 281 | +shiftMap = M.foldrWithKey go M.empty |
| 282 | + where go exp el m = M.insert (shift exp) (shift el) m |
| 283 | + |
| 284 | +unshiftSet :: forall (a :: forall n. Ctx n -> Ty -> Type) ty ctx. |
| 285 | + (Shiftable a, TestEquality (a ctx), IHashable (a ctx)) |
| 286 | + => S.IHashSet (a (ty :> ctx)) |
| 287 | + -> S.IHashSet (a ctx) |
| 288 | +unshiftSet = S.foldr go S.empty |
| 289 | + where |
| 290 | + go exp set |
| 291 | + | Just exp' <- unshift exp |
| 292 | + = S.insert exp' set |
| 293 | + | otherwise |
| 294 | + = set |
| 295 | + |
| 296 | +--------------------------------------------------------- |
| 297 | +-- Examples for testing |
| 298 | + |
| 299 | +_testExp :: Exp VNil ((TInt :-> TInt) :-> TInt :-> TInt) |
| 300 | +_testExp = Lam (SInt ::-> SInt) $ |
| 301 | + Lam SInt $ |
| 302 | + App (Lam SInt $ |
| 303 | + App (Var (ES (ES EZ))) |
| 304 | + (Var (ES EZ))) |
| 305 | + (App (Var (ES EZ)) |
| 306 | + (Var EZ)) |
| 307 | + |
| 308 | +_biggerExp :: Exp VNil ((TInt :-> TInt) :-> TInt :-> TInt) |
| 309 | +_biggerExp = Lam (SInt ::-> SInt) $ |
| 310 | + Lam SInt $ |
| 311 | + App (Lam SInt $ |
| 312 | + App (Lam SInt $ |
| 313 | + App (Var (ES (ES (ES EZ)))) |
| 314 | + (Var (ES (ES EZ)))) |
| 315 | + (App (Var (ES (ES EZ))) |
| 316 | + (Var (ES EZ)))) |
| 317 | + (App (Var (ES EZ)) |
| 318 | + (Var EZ)) |
0 commit comments