-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoutlier_detection.py
267 lines (224 loc) · 11.4 KB
/
outlier_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# METHODS FOR DETECTING OUTLIERS IN UNI-VARIATE DATA
# Calculate upper and lower boundary breaches based on box-whisker-plot fences
def box_whisker_plot_evaluation(base_list):
from numpy import quantile
quantile_25, quantile_50, quantile_75 = quantile(base_list, [0.25, 0.5, 0.75])
iqr = quantile_75 - quantile_25
lower_bound = quantile_25 - (1.5 * iqr)
upper_bound = quantile_75 + (1.5 * iqr)
counter_upper_bound = 0
for i in base_list:
if i > upper_bound:
counter_upper_bound += 1
counter_lower_bound = 0
for n in base_list:
if n < lower_bound:
counter_lower_bound += 1
return counter_upper_bound, counter_lower_bound
# Calculate upper and lower boundary breaches based on median absolute deviation
def mad_evaluation(base_list):
from statistics import median
from scipy.stats import median_abs_deviation
median = median(base_list)
mad = median_abs_deviation(base_list)
b = 1.4826 # value of b taken from: "Detecting outliers: Do not use standard deviation around the mean,
# use absolute deviation around the median" (Leys et al. 2013)
lower_bound = median - (2.5 * (mad * b))
upper_bound = median + (2.5 * (mad * b))
counter_upper_bound = 0
for i in base_list:
if i > upper_bound:
counter_upper_bound += 1
counter_lower_bound = 0
for n in base_list:
if n < lower_bound:
counter_lower_bound += 1
return counter_upper_bound, counter_lower_bound
# Calculate upper and lower boundary breaches based on mean and standard deviation
def mean_stdv_evaluation(base_list):
from statistics import mean, stdev
mean = mean(base_list)
stdv = stdev(base_list)
lower_bound = mean - (2.5 * stdv)
upper_bound = mean + (2.5 * stdv)
counter_upper_bound = 0
for i in base_list:
if i > upper_bound:
counter_upper_bound += 1
counter_lower_bound = 0
for n in base_list:
if n < lower_bound:
counter_lower_bound += 1
return counter_upper_bound, counter_lower_bound
# UNSUPERVISED METHOD FOR DETECTING OUTLIERS IN MULTI-VARIATE DATA BASED ON EVENT LOG FEATURES
def outlier_detection_feature_based_unsupervised(log, model, contamination, distance=None, feature_corr=0.9):
# Import general modules
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from general_methods import case_list
from measures_extracted_from_literature.derived_from_linear_structures import minimum_trace_length, total_number_of_traces
from profile_distances.trace_profile import trace_distance_all_cases
from profile_distances.event_profile import event_profile_distance_all_cases
from profile_distances.k_gram_profile import k_gram_distance_all_cases
from profile_distances.degree_vector import degree_profile_distance_all_cases, out_degree_profile_distance_all_cases
# Import models
from pyod.models.cblof import CBLOF
from pyod.models.hbos import HBOS
from pyod.models.iforest import IForest
from pyod.models.knn import KNN
from pyod.models.lof import LOF
from pyod.models.ocsvm import OCSVM
# Fit the data to the model
if contamination == None:
return 'Contamination not defined!'
if model == 'CBLOF':
clf = CBLOF(contamination=contamination)
elif model == 'HBOS':
clf = HBOS(contamination=contamination)
elif model == 'IForest':
clf = IForest(contamination=contamination, behaviour='new')
elif model == 'KNN':
if distance == None:
return 'No distance assigned!'
else:
metric = distance
clf = KNN(metric=metric, contamination=contamination)
elif model == 'LOF':
if distance == None:
return 'No distance assigned!'
else:
metric = distance
clf = LOF(metric=metric, contamination=contamination)
elif model == 'OCSVM':
clf = OCSVM(contamination=contamination)
else:
return 'No model assigned!'
# Create first columns of the dataframe
case_num = [case.attributes["concept:name"] for case in log]
traces = case_list(log)
# Set up dataframe
try:
d = {'Case_Number': case_num, 'Case_Representation': traces}
df = pd.DataFrame(data=d)
except Exception:
d = {'Case_Number': case_num}
df = pd.DataFrame(data=d)
# Add profile distances to dataframe
df['Trace Distance'] = trace_distance_all_cases(log)[0]
df['Event Profile Euclidean Distance'] = event_profile_distance_all_cases(log, 'euclidean')[0]
df['Event Profile Cosine Distance'] = event_profile_distance_all_cases(log, 'cosine')[0]
df['2 Gram Profile Euclidean Distance'] = k_gram_distance_all_cases(log, 2, 'euclidean')[0]
df['2 Gram Profile Cosine Distance'] = k_gram_distance_all_cases(log, 2, 'cosine')[0]
df['Degree Profile Euclidean Distance'] = degree_profile_distance_all_cases(log, 'euclidean')[0]
df['Degree Profile Cosine Distance'] = degree_profile_distance_all_cases(log, 'cosine')[0]
df['Out-Degree Profile Euclidean Distance'] = out_degree_profile_distance_all_cases(log, 'euclidean')[0]
df['Out-Degree Profile Cosine Distance'] = out_degree_profile_distance_all_cases(log, 'cosine')[0]
# Scale data
scaler = MinMaxScaler(feature_range=(0, 1))
df[['Trace Distance', 'Event Profile Euclidean Distance', 'Event Profile Cosine Distance',
'2 Gram Profile Euclidean Distance', '2 Gram Profile Cosine Distance', 'Degree Profile Euclidean Distance',
'Degree Profile Cosine Distance', 'Out-Degree Profile Euclidean Distance',
'Out-Degree Profile Cosine Distance']] = \
scaler.fit_transform(df[['Trace Distance', 'Event Profile Euclidean Distance', 'Event Profile Cosine Distance',
'2 Gram Profile Euclidean Distance', '2 Gram Profile Cosine Distance',
'Degree Profile Euclidean Distance', 'Degree Profile Cosine Distance',
'Out-Degree Profile Euclidean Distance', 'Out-Degree Profile Cosine Distance']])
# Reshape data
X1 = df['Trace Distance'].values.reshape(-1, 1)
X2 = df['Event Profile Euclidean Distance'].values.reshape(-1, 1)
X3 = df['Event Profile Cosine Distance'].values.reshape(-1, 1)
X4 = df['2 Gram Profile Euclidean Distance'].values.reshape(-1, 1)
X5 = df['2 Gram Profile Cosine Distance'].values.reshape(-1, 1)
X6 = df['Degree Profile Euclidean Distance'].values.reshape(-1, 1)
X7 = df['Degree Profile Cosine Distance'].values.reshape(-1, 1)
X8 = df['Out-Degree Profile Euclidean Distance'].values.reshape(-1, 1)
X9 = df['Out-Degree Profile Cosine Distance'].values.reshape(-1, 1)
# Profiles included in case underlying log allows usage
if minimum_trace_length(log) == 2:
X = np.concatenate((X1, X2, X3, X4, X5, X6, X7, X8, X9), axis=1)
elif minimum_trace_length(log) == 3:
df['3 Gram Profile Euclidean Distance'] = k_gram_distance_all_cases(log, 3, 'euclidean')[0]
df['3 Gram Profile Cosine Distance'] = k_gram_distance_all_cases(log, 3, 'cosine')[0]
# Scale data
df[['3 Gram Profile Euclidean Distance', '3 Gram Profile Cosine Distance']] = \
scaler.fit_transform(df[['3 Gram Profile Euclidean Distance', '3 Gram Profile Cosine Distance']])
# Reshape data
X10 = df['3 Gram Profile Euclidean Distance'].values.reshape(-1, 1)
X11 = df['3 Gram Profile Cosine Distance'].values.reshape(-1, 1)
X = np.concatenate((X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11), axis=1)
else:
df['3 Gram Profile Euclidean Distance'] = k_gram_distance_all_cases(log, 3, 'euclidean')[0]
df['3 Gram Profile Cosine Distance'] = k_gram_distance_all_cases(log, 3, 'cosine')[0]
df['4 Gram Profile Euclidean Distance'] = k_gram_distance_all_cases(log, 4, 'euclidean')[0]
df['4 Gram Profile Cosine Distance'] = k_gram_distance_all_cases(log, 4, 'cosine')[0]
# Scale data
df[['3 Gram Profile Euclidean Distance', '3 Gram Profile Cosine Distance', '4 Gram Profile Euclidean Distance',
'4 Gram Profile Cosine Distance']] = \
scaler.fit_transform(df[['3 Gram Profile Euclidean Distance', '3 Gram Profile Cosine Distance',
'4 Gram Profile Euclidean Distance', '4 Gram Profile Cosine Distance']])
# Reshape data
X10 = df['3 Gram Profile Euclidean Distance'].values.reshape(-1, 1)
X11 = df['3 Gram Profile Cosine Distance'].values.reshape(-1, 1)
X12 = df['4 Gram Profile Euclidean Distance'].values.reshape(-1, 1)
X13 = df['4 Gram Profile Cosine Distance'].values.reshape(-1, 1)
X = np.concatenate((X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13), axis=1)
# Fit the data to the model
clf.fit(X)
# Predict raw anomaly score
scores_pred = clf.decision_function(X) * -1
# Prediction of a datapoint category outlier or inlier
y_pred = clf.predict(X)
regular_inliers = len(y_pred) - np.count_nonzero(y_pred)
regular_outliers = np.count_nonzero(y_pred == 1)
# Insert outlier tag into dataframe
df['Score'] = scores_pred
df['Outlier'] = y_pred
# ---------------------------------------------------------------------------------------------------
# Evaluate Feature Correlation
try:
dfx = df.drop(columns=['Case_Number', 'Case_Representation', 'Score', 'Outlier'])
except KeyError:
dfx = df.drop(columns=['Case_Number', 'Score', 'Outlier'])
corr = dfx.corr()
cor_matrix = corr.values.tolist()
rows_to_drop = set()
for row in range(len(cor_matrix)):
if not cor_matrix[row][-1] == 'dropped':
for column in range(row + 1, len(cor_matrix[row])):
if not -feature_corr < cor_matrix[row][column] < feature_corr:
rows_to_drop.add(column)
cols = list(rows_to_drop)
dfx_2 = dfx.drop(dfx.columns[cols], axis=1)
corr_2 = dfx_2.corr()
l = []
for i in range(len(dfx_2.columns)):
l.append(dfx_2.iloc[:, i].values.reshape(-1, 1))
Y = np.concatenate((l), axis=1)
# Fit the data to the model
clf.fit(Y)
# Predict raw anomaly score
scores_pred = clf.decision_function(Y) * -1
# Prediction of a datapoint category outlier or inlier
y_pred = clf.predict(Y)
reduced_inliers = len(y_pred) - np.count_nonzero(y_pred)
reduced_outliers = np.count_nonzero(y_pred == 1)
# Insert outlier tag into dataframe
try:
dfx_2['Score'] = scores_pred
dfx_2['Outlier'] = y_pred
dfx_2.insert(0, 'Case_Representation', traces)
dfx_2.insert(0, 'Case_Number', case_num)
except ValueError:
dfx_2['Score'] = scores_pred
dfx_2['Outlier'] = y_pred
dfx_2.insert(0, 'Case_Number', case_num)
# ----------------------------------------------------------------------------------------------------------
# uncomment code to print feature evaluation to excel file
# with pd.ExcelWriter("04_Feature_Distance_Evaluation.xlsx") as writer:
# df.to_excel(writer, sheet_name='Distance_Summary')
# dfx.to_excel(writer, sheet_name='Correlation_Features')
# corr.to_excel(writer, sheet_name='Correlation')
# corr_2.to_excel(writer, sheet_name='Correlation_2')
# dfx_2.to_excel(writer, sheet_name='Correlation_Features_New')
return regular_outliers, regular_inliers, reduced_outliers, reduced_inliers