-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
30 lines (25 loc) · 1.05 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import os
import argparse
from diffusers import StableDiffusionKDiffusionPipeline
def process_dir_standard(in_dir, out_dir, seed=123456):
os.makedirs(out_dir, exist_ok=True)
pipe = StableDiffusionKDiffusionPipeline.from_pretrained(in_dir).to('cuda')
pipe.set_scheduler('sample_dpmpp_2m')
for idx, prompt in enumerate(COMMON_PROMPTS):
img_name = str(idx).zfill(4) + ".png"
out_path = os.path.join(out_dir, img_name)
image = pipe(prompt=prompt,
num_inference_steps=50, generator=torch.Generator().manual_seed(seed),
width=768, height=768,
use_karras_sigmas=True).images[0]
image.save(out_path)
parser = argparse.ArgumentParser()
parser.add_argument('--in_dir', type=str)
parser.add_argument('--out_dir', type=str)
parser.add_argument('--prompts', type=str)
args = parser.parse_args()
with open(args.prompts, 'r') as file:
COMMON_PROMPTS = file.readlines()
COMMON_PROMPTS = [prompt.strip() for prompt in COMMON_PROMPTS]
process_dir_standard(args.in_dir, args.out_dir)