forked from QTIM-Lab/qtim_ROP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretina_net.py
executable file
·218 lines (162 loc) · 8.2 KB
/
retina_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
import sys
from os import listdir, chdir
from os.path import dirname, basename, splitext, abspath
from sklearn.metrics import confusion_matrix, classification_report
from keras.models import Model
from keras.layers import Dense, Flatten, Input, Dropout
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.utils.visualize_util import plot
from keras.optimizers import SGD, RMSprop
from common import *
from plotting import *
from models import SGDLearningRateTracker
OPTIMIZERS = {'sgd': SGD, 'rmsprop': RMSprop}
class RetiNet(object):
def __init__(self, conf_file):
# Parse config
self.conf_file = conf_file
self.config = parse_yaml(conf_file)
self.ext = self.config.get('ext', '.png')
self.conf_dir = dirname(abspath(self.conf_file))
self.experiment_name = splitext(basename(self.conf_file))[0]
chdir(self.conf_dir)
self.train_dir = abspath(self.config['training_dir'])
self.val_dir = abspath(self.config['validation_dir'])
try:
self.config['mode']
except KeyError:
print "Please specify a mode 'train' or 'evaluate' in the config file."
exit()
if self.config['mode'] == 'train':
# Set up logging
self.experiment_dir = make_sub_dir(self.conf_dir, self.experiment_name)
setup_log(join(self.experiment_dir, 'training.log'), to_file=self.config.get('logging', False))
logging.info("Experiment name: {}".format(self.experiment_name))
self._configure_network()
# Get number of classes and samples
self.no_classes = listdir(self.train_dir)
self.nb_train_samples = len(find_images(join(self.train_dir, '*')))
self.nb_val_samples = len(find_images(join(self.val_dir, '*')))
self.train()
elif self.config['mode'] == 'evaluate':
# Set up logging
setup_log(None)
self._configure_network()
self.experiment_dir = self.conf_dir
self.evaluate(self.config['test_dir'])
def _configure_network(self):
network = self.config['network']
type_, weights = network['type'].lower(), network.get('weights', None)
fine_tuning = " with pre-trained weights '{}'".format(weights) if weights else " without pre-training"
if 'vgg' in type_:
from keras.applications.vgg16 import VGG16
logging.info("Instantiating VGG model" + fine_tuning)
self.model = VGG16(weights=weights, input_shape=(3, 227, 227), include_top=True)
elif 'resnet' in type_:
from keras.applications.resnet50 import ResNet50
logging.info("Instantiating ResNet model" + fine_tuning)
input_layer = Input(shape=(3, 224, 224))
base_model = ResNet50(weights=weights, include_top=False, input_tensor=input_layer)
x = base_model.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(3, activation='softmax')(x)
self.model = Model(input=base_model.input, output=predictions)
for layer in base_model.layers:
layer.trainable = False
else:
if 'googlenet' in type_:
from googlenet_custom_layers import PoolHelper, LRN
custom_objects = {"PoolHelper": PoolHelper, "LRN": LRN}
mod_str = 'GoogLeNet'
else:
custom_objects = {}
mod_str = 'custom'
logging.info("Instantiating {} model".format(mod_str) + fine_tuning)
arch = network.get('arch', None)
self.model = model_from_json(open(arch).read(), custom_objects=custom_objects)
if weights:
self.model.load_weights(weights, by_name=True)
# Configure optimizer
opt_options = self.config['optimizer']
name, params = opt_options['type'], opt_options['params']
optimizer = OPTIMIZERS[name](**params)
self.model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
plot(self.model, join(self.experiment_dir, 'final_model.png'))
def train(self):
# Train
epochs = self.config.get('epochs', 50) # default to 50 if not specified
input_shape = self.model.input_shape[1:]
train_gen = self.create_generator(self.train_dir, input_shape, training=True)
val_gen = self.create_generator(self.val_dir, input_shape, training=False)
# Check point callback saves weights on improvement
weights_out = join(self.experiment_dir, 'best_weights.h5')
checkpoint_tb = ModelCheckpoint(filepath=weights_out, verbose=1, save_best_only=True)
lr_tb = SGDLearningRateTracker()
logging.info("Training model for {} epochs".format(epochs))
history = self.model.fit_generator(
train_gen,
samples_per_epoch=self.nb_train_samples,
nb_epoch=epochs,
validation_data=val_gen,
nb_val_samples=self.nb_val_samples, callbacks=[checkpoint_tb, lr_tb])
# Save model arch, weights and history
dict_to_csv(history.history, join(self.experiment_dir, "history.csv"))
np.save(join(self.experiment_dir, 'learning_rate.npy'), lr_tb.lr)
self.model.save_weights(join(self.experiment_dir, 'final_weights.h5'))
with open(join(self.experiment_dir, 'model_arch.json'), 'w') as arch:
arch.writelines(self.model.to_json())
# Create modified copy of config file
conf_eval = self.update_config()
with open(join(self.experiment_dir, self.experiment_name + '.yaml'), 'wb') as ce:
yaml.dump(conf_eval, ce, default_flow_style=False)
# Evaluate results
self.evaluate(self.val_dir)
def update_config(self):
conf_eval = dict(self.config)
conf_eval['mode'] = 'evaluate'
conf_eval['network']['arch'] = 'model_arch.json'
conf_eval['network']['weights'] = 'best_weights.h5'
conf_eval['training_dir'] = abspath(self.config['training_dir'])
conf_eval['validation_dir'] = abspath(self.config['validation_dir'])
return conf_eval
def evaluate(self, data_path):
logging.info("Evaluating model for on {}".format(data_path))
datagen = self.create_generator(data_path, self.model.input_shape[1:], batch_size=1, training=False)
print datagen.class_indices
no_samples = len(find_images(join(data_path, '*')))
# Predict data
predictions = self.model.predict_generator(datagen, no_samples)
y_true, y_pred = datagen.classes, np.argmax(predictions, axis=1)
labels = [k[0] for k in sorted(datagen.class_indices.items(), key=lambda x: x[1])]
confusion = confusion_matrix(y_true, y_pred)
print classification_report(y_true, y_pred)
with open(join(self.experiment_dir, 'confusion.csv'), 'wb') as conf_csv:
pd.DataFrame(data=confusion).to_csv(conf_csv)
# Plots
plot_confusion(confusion, labels, join(self.experiment_dir, 'confusion' + self.ext))
history = csv_to_dict(join(self.experiment_dir, "history.csv"))
plot_accuracy(history, join(self.experiment_dir, 'accuracy' + self.ext))
plot_loss(history, join(self.experiment_dir, 'loss' + self.ext))
def create_generator(self, data_path, input_shape, batch_size=32, training=True):
zmuv = self.config.get('zmuv', False)
if zmuv:
logging.info('Normalizing data zero mean, unit variance')
datagen = ImageDataGenerator(samplewise_center=zmuv, samplewise_std_normalization=zmuv)
generator = datagen.flow_from_directory(
data_path,
target_size=input_shape[1:],
batch_size=batch_size,
class_mode='categorical',
shuffle=training)
return generator
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('-c', '--config', dest='config', required=True)
args = parser.parse_args()
r = RetiNet(args.config)