-
Notifications
You must be signed in to change notification settings - Fork 0
/
ac.py
264 lines (213 loc) · 9.35 KB
/
ac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
Based on:
https://towardsdatascience.com/reinforcement-learning-w-keras-openai-actor-critic-models-f084612cfd69
Actor-critic algorithm
Good for continuous action spaces, will it work for our large discrete space?
No luck with this one...
"""
import random
from collections import deque
import gym
import numpy as np
from keras.models import Model
from keras.layers import Dense, Input
from keras.layers.merge import Add
from keras.optimizers import adam_v2
import keras.backend as K
import tensorflow as tf
from tensorflow import compat
from gym.envs.registration import register
from numpy.random import default_rng
# Cheating - ultimately we don't want the model to know anything about english words
from all_words import WORDS
from wordle import WordleEnv
# Register our custom environment
register(
id="wordle-v0",
entry_point="wordle:WordleEnv",
)
class ActorCritic:
"""
Determines how to assign values to each state, i.e. takes the state
and action (two-input model) and determines the corresponding value.
Chain rule: find the gradient of changing the actor network params in
getting closest to the final value network predictions, i.e. de/dA
Calculate de/dA as = de/dC * dC/dA, where e is error, C critic, A act #
"""
def __init__(self, env, sess):
self.env = env
self.sess = sess
self.learning_rate = 0.001
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.gamma = 0.95
self.tau = 0.125
tf.compat.v1.disable_eager_execution()
self.memory = deque(maxlen=2000)
self.actor_state_input, self.actor_model = self.create_actor_model()
_, self.target_actor_model = self.create_actor_model()
self.actor_critic_grad = compat.v1.placeholder(
tf.float32, [None, self.env.action_space.shape[0]]
) # where we will feed de/dC (from critic)
actor_model_weights = self.actor_model.trainable_weights
self.actor_grads = tf.gradients(
self.actor_model.output, actor_model_weights, -self.actor_critic_grad
) # dC/dA (from actor)
grads = zip(self.actor_grads, actor_model_weights)
self.optimize = compat.v1.train.AdamOptimizer(self.learning_rate).apply_gradients(
grads
)
(
self.critic_state_input,
self.critic_action_input,
self.critic_model,
) = self.create_critic_model()
_, _, self.critic_target_model = self.create_critic_model()
self.critic_grads = tf.gradients(
self.critic_model.output, self.critic_action_input
) # where we calcaulte de/dC for feeding above
# Initialize for later gradient calculations
self.sess.run(compat.v1.initialize_all_variables())
def create_actor_model(self):
"Create the actor model"
print("obs shape", self.env.observation_space.shape)
state_input = Input(shape=self.env.observation_space.shape)
layer1 = Dense(24, activation="relu")(state_input)
layer2 = Dense(48, activation="relu")(layer1)
layer3 = Dense(24, activation="relu")(layer2)
output = Dense(self.env.action_space.shape[0], activation="relu")(layer3)
# This model will converge on what looks like 'AAAAA' for all predictions,
# but that's beacause it assumes a continuous action space and it's producing
# values like 0.11 instead of integers in range 0-25.
# Need to adapt this to a discrete action space, or find a different algorithm.
# How do I configure the Model so it understands the actions are [{0-25}, {0-25}, etc] ?
# The environment defines the action space as
# spaces.MultiDiscrete([26, 26, 26, 26, 26], dtype=np.ubyte)
# so I don't understand why actor_model.predict is producing output like
# [0. 0.12518406 0. 0. 0.05493959]
# It seems like it's on the right track, since the prios action was
# NEATH
# and the prior observation was
# 02002 <- E and H were in the correct position
# The fact that positions 1 and 4 are non-zero is encouraging. But why the floats?
# The observation space shape is (5,) - not specific enough
model = Model(inputs=state_input, outputs=output)
adam = adam_v2.Adam(lr=0.001)
model.compile(loss="mse", optimizer=adam)
return state_input, model
def create_critic_model(self):
"Create the critic model"
obs_shape = self.env.observation_space.shape
#print("obs_shape", obs_shape)
state_input = Input(shape=obs_shape)
state_h1 = Dense(24, activation="relu")(state_input)
state_h2 = Dense(48)(state_h1)
action_shape = self.env.action_space.shape
#print("action_shape", action_shape)
action_input = Input(shape=action_shape)
action_h1 = Dense(48)(action_input)
merged = Add()([state_h2, action_h1])
merged_h1 = Dense(24, activation="relu")(merged)
output = Dense(1, activation="relu")(merged_h1)
model = Model(inputs=[state_input, action_input], outputs=output)
adam = adam_v2.Adam(lr=0.001)
model.compile(loss="mse", optimizer=adam)
return state_input, action_input, model
def remember(self, cur_state, action, reward, new_state, done):
"Append to memory"
self.memory.append([cur_state, action, reward, new_state, done])
def _train_actor(self, samples):
"Train the actor"
for sample in samples:
cur_state, _, _, _, _ = sample
predicted_action = self.actor_model.predict(cur_state)
grads = self.sess.run(
self.critic_grads,
feed_dict={
self.critic_state_input: cur_state,
self.critic_action_input: predicted_action,
},
)[0]
self.sess.run(
self.optimize,
feed_dict={
self.actor_state_input: cur_state,
self.actor_critic_grad: grads,
},
)
def _train_critic(self, samples):
"Train the critic"
for sample in samples:
cur_state, action, reward, new_state, done = sample
if not done:
target_action = self.target_actor_model.predict(new_state)
future_reward = self.critic_target_model.predict(
[new_state, target_action]
)[0][0]
reward += self.gamma * future_reward
#print("_train_critic future reward", reward)
#print("_train_critic cur_state", cur_state)
#print("_train_critic action", action)
self.critic_model.fit([cur_state, action], [reward], verbose=0)
def train(self):
"Train"
batch_size = 32
if len(self.memory) < batch_size:
return
samples = random.sample(self.memory, batch_size)
self._train_critic(samples)
self._train_actor(samples)
def _update_actor_target(self):
"Update the target model"
actor_model_weights = self.actor_model.get_weights()
actor_target_weights = self.critic_target_model.get_weights()
for i in range(len(actor_target_weights)):
actor_target_weights[i] = actor_model_weights[i]
self.critic_target_model.set_weights(actor_target_weights)
def _update_critic_target(self):
"Update the critic"
critic_model_weights = self.critic_model.get_weights()
critic_target_weights = self.critic_target_model.get_weights()
for i in range(len(critic_target_weights)):
critic_target_weights[i] = critic_model_weights[i]
self.critic_target_model.set_weights(critic_target_weights)
def update_target(self):
"Update the actor and critic models"
self._update_actor_target()
self._update_critic_target()
def act(self, cur_state):
"Take a random action or exploit what we know"
self.epsilon *= self.epsilon_decay
if np.random.random() < self.epsilon:
print("act random")
#return self.env.action_space.sample()
# CHEATING
# Let's sample valid words and see if this works
word = WORDS[default_rng().integers(low=0, high=len(WORDS))]
return WordleEnv.convert_word(word)
print("act predict")
return self.actor_model.predict(cur_state)
def main():
"Run the training algorithm"
sess = compat.v1.Session()
K.set_session(sess)
env = gym.make("wordle-v0")
actor_critic = ActorCritic(env, sess)
for _ in range(100):
print("New episode")
cur_state = env.reset()
action = env.action_space.sample()
for _ in range(100):
cur_state = np.reshape(cur_state, (1, env.observation_space.shape[0]))
action = actor_critic.act(cur_state)
#print("action", action)
action = np.reshape(action, (1, env.action_space.shape[0]))
print("reshaped", action)
new_state, reward, done, _ = env.step(action[0])
env.render()
new_state = np.reshape(new_state, (1, env.observation_space.shape[0]))
actor_critic.remember(cur_state, action, reward, new_state, done)
actor_critic.train()
cur_state = new_state
if __name__ == "__main__":
main()