|
| 1 | +## call from browser inside initialisation |
| 2 | +files <- c( |
| 3 | + "convolve.stan", "gaussian_process.stan", "pmfs.stan", |
| 4 | + "observation_model.stan", "secondary.stan", "params.stan", |
| 5 | + "rt.stan", "infections.stan", "delays.stan", "generated_quantities.stan" |
| 6 | +) |
| 7 | +suppressMessages( |
| 8 | + expose_stan_fns(files, |
| 9 | + target_dir = system.file("stan/functions", package = "EpiNow2") |
| 10 | + ) |
| 11 | +) |
| 12 | + |
| 13 | +simulate <- function(data, |
| 14 | + generation_time = gt_opts(), |
| 15 | + delays = delay_opts(), |
| 16 | + truncation = trunc_opts(), |
| 17 | + rt = rt_opts(), |
| 18 | + backcalc = backcalc_opts(), |
| 19 | + gp = gp_opts(), |
| 20 | + obs = obs_opts(), |
| 21 | + forecast = forecast_opts(), |
| 22 | + stan = stan_opts(), |
| 23 | + inits = NULL) { |
| 24 | + |
| 25 | + seeding_time <- get_seeding_time(delays, generation_time, rt) |
| 26 | + |
| 27 | + reported_cases <- default_fill_missing_obs(data, obs, "confirm") |
| 28 | + if (forecast$horizon > 0) { |
| 29 | + reported_cases <- add_horizon( |
| 30 | + reported_cases, forecast$horizon, forecast$accumulate |
| 31 | + ) |
| 32 | + } |
| 33 | + reported_cases <- create_clean_reported_cases( |
| 34 | + reported_cases, |
| 35 | + filter_leading_zeros = TRUE, |
| 36 | + zero_threshold = Inf |
| 37 | + ) |
| 38 | + reported_cases <- data.table::rbindlist(list( |
| 39 | + data.table::data.table( |
| 40 | + date = seq( |
| 41 | + min(reported_cases$date) - seeding_time - backcalc$prior_window, |
| 42 | + min(reported_cases$date) - 1, |
| 43 | + by = "days" |
| 44 | + ), |
| 45 | + confirm = 0, accumulate = FALSE, breakpoint = 0 |
| 46 | + ), |
| 47 | + reported_cases[, .(date, confirm, accumulate, breakpoint)] |
| 48 | + )) |
| 49 | + shifted_cases <- create_shifted_cases( |
| 50 | + reported_cases, |
| 51 | + seeding_time, |
| 52 | + backcalc$prior_window, |
| 53 | + forecast$horizon |
| 54 | + ) |
| 55 | + reported_cases <- reported_cases[-(1:backcalc$prior_window)] |
| 56 | + |
| 57 | + # Define stan model parameters |
| 58 | + stan_data <- create_stan_data( |
| 59 | + reported_cases, |
| 60 | + seeding_time = seeding_time, |
| 61 | + rt = rt, |
| 62 | + gp = gp, |
| 63 | + obs = obs, |
| 64 | + backcalc = backcalc, |
| 65 | + shifted_cases = shifted_cases$confirm, |
| 66 | + forecast = forecast |
| 67 | + ) |
| 68 | + |
| 69 | + stan_data <- c(stan_data, create_stan_delays( |
| 70 | + gt = generation_time, |
| 71 | + delay = delays, |
| 72 | + trunc = truncation, |
| 73 | + time_points = stan_data$t - stan_data$seeding_time - stan_data$horizon |
| 74 | + )) |
| 75 | + |
| 76 | + if (is.null(inits)) { |
| 77 | + init <- create_initial_conditions(stan_data) |
| 78 | + inits <- init() |
| 79 | + } else { |
| 80 | + if (stan_data$bp_n == 0) { |
| 81 | + inits$bp_sd <- array(numeric(0)) |
| 82 | + inits$bp_effects <- array(numeric(0)) |
| 83 | + } |
| 84 | + } |
| 85 | + for (n in names(inits)) assign(n, inits[[n]]) |
| 86 | + for (n in names(stan_data)) assign(n, stan_data[[n]]) |
| 87 | + |
| 88 | + ot <- t - seeding_time - horizon |
| 89 | + ot_h <- ot + horizon |
| 90 | + noise_terms <- setup_noise( |
| 91 | + ot_h, t, horizon, estimate_r, stationary, future_fixed, fixed_from |
| 92 | + ) |
| 93 | + PHI <- setup_gp(M, L, noise_terms, gp_type == 1, w0) |
| 94 | + delay_type_max <- get_delay_type_max( |
| 95 | + delay_types, delay_types_p, delay_types_id, |
| 96 | + delay_types_groups, delay_max, delay_np_pmf_groups |
| 97 | + ) |
| 98 | + initial_infections_guess <- max( |
| 99 | + 0, |
| 100 | + log(mean(head(cases, ifelse(length(cases) > 7, 7, length(cases))))) |
| 101 | + ) |
| 102 | + if (!fixed) { |
| 103 | + alpha <- get_param( |
| 104 | + alpha_id, params_fixed_lookup, params_variable_lookup, params_value, |
| 105 | + params |
| 106 | + ) |
| 107 | + rescaled_rho <- 2 * get_param( |
| 108 | + rho_id, params_fixed_lookup, params_variable_lookup, |
| 109 | + params_value, params |
| 110 | + ) / noise_terms |
| 111 | + noise <- update_gp( |
| 112 | + PHI, M, L, alpha, rescaled_rho, eta, gp_type, nu |
| 113 | + ) |
| 114 | + } else { |
| 115 | + noise <- numeric(0) |
| 116 | + } |
| 117 | + if (estimate_r) { |
| 118 | + gt_rev_pmf <- get_delay_rev_pmf( |
| 119 | + gt_id, delay_type_max[gt_id] + 1, delay_types_p, delay_types_id, |
| 120 | + delay_types_groups, delay_max, delay_np_pmf, |
| 121 | + delay_np_pmf_groups, delay_params, delay_params_groups, delay_dist, |
| 122 | + 1, 1, 0 |
| 123 | + ) |
| 124 | + R0 <- get_param( |
| 125 | + R0_id, params_fixed_lookup, params_variable_lookup, params_value, params |
| 126 | + ) |
| 127 | + R <- update_Rt( |
| 128 | + ot_h, R0, noise, breakpoints, bp_effects, stationary |
| 129 | + ) |
| 130 | + frac_obs <- get_param( |
| 131 | + frac_obs_id, params_fixed_lookup, params_variable_lookup, params_value, |
| 132 | + params |
| 133 | + ) |
| 134 | + pop <- get_param( |
| 135 | + pop_id, params_fixed_lookup, params_variable_lookup, params_value, |
| 136 | + params |
| 137 | + ) |
| 138 | + infections <- generate_infections( |
| 139 | + R, seeding_time, gt_rev_pmf, initial_infections, pop, |
| 140 | + use_pop, future_time, obs_scale, frac_obs, 1 |
| 141 | + ) |
| 142 | + } else { |
| 143 | + infections <- deconvolve_infections( |
| 144 | + shifted_cases, noise, fixed, backcalc_prior |
| 145 | + ) |
| 146 | + } |
| 147 | + delay_rev_pmf <- get_delay_rev_pmf( |
| 148 | + delay_id, delay_type_max[delay_id] + 1, delay_types_p, delay_types_id, |
| 149 | + delay_types_groups, delay_max, delay_np_pmf, |
| 150 | + delay_np_pmf_groups, delay_params, delay_params_groups, delay_dist, |
| 151 | + 0, 1, 0 |
| 152 | + ) |
| 153 | + reports <- convolve_to_report(infections, delay_rev_pmf, seeding_time) |
| 154 | + if (week_effect > 1) { |
| 155 | + reports <- day_of_week_effect(reports, day_of_week, day_of_week_simplex) |
| 156 | + } |
| 157 | + if (obs_scale) { |
| 158 | + frac_obs <- get_param( |
| 159 | + frac_obs_id, params_fixed_lookup, params_variable_lookup, params_value, |
| 160 | + params |
| 161 | + ) |
| 162 | + reports <- scale_obs(reports, frac_obs) |
| 163 | + } |
| 164 | + if (trunc_id) { |
| 165 | + trunc_rev_cmf <- get_delay_rev_pmf( |
| 166 | + trunc_id, delay_type_max[trunc_id] + 1, delay_types_p, delay_types_id, |
| 167 | + delay_types_groups, delay_max, delay_np_pmf, |
| 168 | + delay_np_pmf_groups, delay_params, delay_params_groups, delay_dist, |
| 169 | + 0, 1, 1 |
| 170 | + ) |
| 171 | + obs_reports <- truncate_obs(reports[1:ot], trunc_rev_cmf, 0) |
| 172 | + } else { |
| 173 | + obs_reports <- reports[1:ot] |
| 174 | + } |
| 175 | + if (any_accumulate) { |
| 176 | + obs_reports <- accumulate_reports(obs_reports, accumulate) |
| 177 | + } |
| 178 | + if (!fixed) { |
| 179 | + gaussian_process_lp(eta) |
| 180 | + } |
| 181 | + delays_lp( |
| 182 | + delay_params, delay_params_mean, delay_params_sd, delay_params_groups, |
| 183 | + delay_dist, delay_weight |
| 184 | + ) |
| 185 | + params_lp( |
| 186 | + params, prior_dist, prior_dist_params, params_lower, params_upper |
| 187 | + ) |
| 188 | + rt_lp( |
| 189 | + initial_infections, bp_effects, bp_sd, bp_n, |
| 190 | + cases, initial_infections_guess |
| 191 | + ) |
| 192 | + if (likelihood) { |
| 193 | + dispersion <- get_param( |
| 194 | + dispersion_id, params_fixed_lookup, params_variable_lookup, params_value, |
| 195 | + params |
| 196 | + ) |
| 197 | + report_lp( |
| 198 | + cases, case_times, obs_reports, dispersion, model_type, obs_weight |
| 199 | + ) |
| 200 | + } |
| 201 | + if (!fixed) { |
| 202 | + rescaled_rho <- get_param( |
| 203 | + rho_id, params_fixed_lookup, params_variable_lookup, |
| 204 | + params_value, params |
| 205 | + ) |
| 206 | + x <- seq(1, noise_terms) |
| 207 | + rho <- rescaled_rho * 0.5 * (max(x) - 1) |
| 208 | + } |
| 209 | + return(reports) |
| 210 | +} |
0 commit comments