-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
42 lines (33 loc) · 2.28 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import tensorflow as tf
from layers import deConvLayer, convLayer
def generator(x, out_channel_dim, isTrain=True, reuse=False):
with tf.variable_scope('G', reuse=reuse):
h1 = deConvLayer(inputs=x, filters=1024, kernel_size=[4, 4], strides=(1, 1), padding='VALID',
activation='lrelu', batch_normalization=True, training=isTrain)
h2 = deConvLayer(inputs=h1, filters=512, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
h3 = deConvLayer(inputs=h2, filters=256, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
h4 = deConvLayer(inputs=h3, filters=128, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
# out layer
h5 = tf.layers.conv2d_transpose(inputs=h4, filters=out_channel_dim,
kernel_size=[4, 4], strides=(2, 2),
padding='SAME')
o = tf.nn.tanh(h5)
tf.summary.image("Generated Images", o, 9)
return o
def discriminator(x, isTrain=True, reuse=False):
with tf.variable_scope('D', reuse=reuse):
h1 = convLayer(inputs=x, filters=128, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
h2 = convLayer(inputs=h1, filters=256, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
h3 = convLayer(inputs=h2, filters=512, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
h4 = convLayer(inputs=h3, filters=1024, kernel_size=[4, 4], strides=(2, 2), padding='SAME',
activation='lrelu', batch_normalization=True, training=isTrain)
# out Layer
h5 = tf.layers.conv2d(inputs=h4, filters=1, kernel_size=[4, 4], strides=(1, 1), padding='VALID')
o = tf.nn.sigmoid(h5)
return o, h5