-
Notifications
You must be signed in to change notification settings - Fork 13
/
models.py
85 lines (73 loc) · 3.02 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.utils.data
import torch.nn as nn
def get_model(params):
if params['model'] == 'ResidualFCNet':
return ResidualFCNet(params['input_dim'], params['num_classes'], params['num_filts'], params['depth'])
elif params['model'] == 'LinNet':
return LinNet(params['input_dim'], params['num_classes'])
else:
raise NotImplementedError('Invalid model specified.')
class ResLayer(nn.Module):
def __init__(self, linear_size):
super(ResLayer, self).__init__()
self.l_size = linear_size
self.nonlin1 = nn.ReLU(inplace=True)
self.nonlin2 = nn.ReLU(inplace=True)
self.dropout1 = nn.Dropout()
self.w1 = nn.Linear(self.l_size, self.l_size)
self.w2 = nn.Linear(self.l_size, self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.nonlin1(y)
y = self.dropout1(y)
y = self.w2(y)
y = self.nonlin2(y)
out = x + y
return out
class ResidualFCNet(nn.Module):
def __init__(self, num_inputs, num_classes, num_filts, depth=4):
super(ResidualFCNet, self).__init__()
self.inc_bias = False
self.class_emb = nn.Linear(num_filts, num_classes, bias=self.inc_bias)
layers = []
layers.append(nn.Linear(num_inputs, num_filts))
layers.append(nn.ReLU(inplace=True))
for i in range(depth):
layers.append(ResLayer(num_filts))
self.feats = torch.nn.Sequential(*layers)
def forward(self, x, class_of_interest=None, return_feats=False):
loc_emb = self.feats(x)
if return_feats:
return loc_emb
if class_of_interest is None:
class_pred = self.class_emb(loc_emb)
else:
class_pred = self.eval_single_class(loc_emb, class_of_interest)
return torch.sigmoid(class_pred)
def eval_single_class(self, x, class_of_interest):
if self.inc_bias:
return x @ self.class_emb.weight[class_of_interest, :] + self.class_emb.bias[class_of_interest]
else:
return x @ self.class_emb.weight[class_of_interest, :]
class LinNet(nn.Module):
def __init__(self, num_inputs, num_classes):
super(LinNet, self).__init__()
self.num_layers = 0
self.inc_bias = False
self.class_emb = nn.Linear(num_inputs, num_classes, bias=self.inc_bias)
self.feats = nn.Identity() # does not do anything
def forward(self, x, class_of_interest=None, return_feats=False):
loc_emb = self.feats(x)
if return_feats:
return loc_emb
if class_of_interest is None:
class_pred = self.class_emb(loc_emb)
else:
class_pred = self.eval_single_class(loc_emb, class_of_interest)
return torch.sigmoid(class_pred)
def eval_single_class(self, x, class_of_interest):
if self.inc_bias:
return x @ self.class_emb.weight[class_of_interest, :] + self.class_emb.bias[class_of_interest]
else:
return x @ self.class_emb.weight[class_of_interest, :]