-
Notifications
You must be signed in to change notification settings - Fork 6
/
base.py
651 lines (528 loc) · 23 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
from __future__ import print_function
import string
import sys
from collections import deque
import numpy as np
from scipy.misc import logsumexp
from sklearn.base import BaseEstimator, _pprint
from sklearn.utils import check_array, check_random_state
from sklearn.utils.validation import check_is_fitted
from hmmlearn import _hmmc
from hmmlearn.utils import normalize, log_normalize, iter_from_X_lengths
#: Supported decoder algorithms.
DECODER_ALGORITHMS = frozenset(("viterbi", "map"))
class ConvergenceMonitor(object):
"""Monitors and reports convergence to :data:`sys.stderr`.
Parameters
----------
tol : double
Convergence threshold. EM has converged either if the maximum
number of iterations is reached or the log probability
improvement between the two consecutive iterations is less
than threshold.
n_iter : int
Maximum number of iterations to perform.
verbose : bool
If ``True`` then per-iteration convergence reports are printed,
otherwise the monitor is mute.
Attributes
----------
history : deque
The log probability of the data for the last two training
iterations. If the values are not strictly increasing, the
model did not converge.
iter : int
Number of iterations performed while training the model.
"""
_template = "{iter:>10d} {logprob:>16.4f} {delta:>+16.4f}"
def __init__(self, tol, n_iter, verbose):
self.tol = tol
self.n_iter = n_iter
self.verbose = verbose
self.history = deque(maxlen=2)
self.iter = 0
def __repr__(self):
class_name = self.__class__.__name__
params = dict(vars(self), history=list(self.history))
return "{0}({1})".format(
class_name, _pprint(params, offset=len(class_name)))
def report(self, logprob):
"""Reports convergence to :data:`sys.stderr`.
The output consists of three columns: iteration number, log
probability of the data at the current iteration and convergence
rate. At the first iteration convergence rate is unknown and
is thus denoted by NaN.
Parameters
----------
logprob : float
The log probability of the data as computed by EM algorithm
in the current iteration.
"""
if self.verbose:
delta = logprob - self.history[-1] if self.history else np.nan
message = self._template.format(
iter=self.iter + 1, logprob=logprob, delta=delta)
print(message, file=sys.stderr)
self.history.append(logprob)
# print('history', self.history)
# if (len(self.history) == 2):
# print('rest:', self.history[1] - self.history[0])
self.iter += 1
@property
def converged(self):
"""``True`` if the EM algorithm converged and ``False`` otherwise."""
# XXX we might want to check that ``logprob`` is non-decreasing.
return (self.iter == self.n_iter or
(len(self.history) == 2 and
np.abs(self.history[1] - self.history[0]) < self.tol))
class _BaseHMM(BaseEstimator):
"""Base class for Hidden Markov Models.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
See the instance documentation for details specific to a
particular object.
Parameters
----------
n_components : int
Number of states in the model.
startprob_prior : array, shape (n_components, )
Initial state occupation prior distribution.
transmat_prior : array, shape (n_components, n_components)
Matrix of prior transition probabilities between states.
algorithm : string
Decoder algorithm. Must be one of "viterbi" or "map".
Defaults to "viterbi".
random_state: RandomState or an int seed
A random number generator instance.
n_iter : int, optional
Maximum number of iterations to perform.
tol : float, optional
Convergence threshold. EM will stop if the gain in log-likelihood
is below this value.
verbose : bool, optional
When ``True`` per-iteration convergence reports are printed
to :data:`sys.stderr`. You can diagnose convergence via the
:attr:`monitor_` attribute.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, and other characters for subclass-specific
emission parameters. Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, and other characters for
subclass-specific emission parameters. Defaults to all
parameters.
Attributes
----------
monitor\_ : ConvergenceMonitor
Monitor object used to check the convergence of EM.
startprob\_ : array, shape (n_components, )
Initial state occupation distribution.
transmat\_ : array, shape (n_components, n_components)
Matrix of transition probabilities between states.
"""
def __init__(self, n_components=1,
startprob_prior=1.0, transmat_prior=1.0,
algorithm="viterbi", random_state=None,
n_iter=30, tol=1e-3, verbose=False,
params=string.ascii_letters,
init_params=string.ascii_letters):
self.n_components = n_components
self.params = params
self.init_params = init_params
self.startprob_prior = startprob_prior
self.transmat_prior = transmat_prior
self.algorithm = algorithm
self.random_state = random_state
self.n_iter = n_iter
self.tol = tol
self.verbose = verbose
def score_samples(self, X, lengths=None):
"""Compute the log probability under the model and compute posteriors.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, ), optional
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
Returns
-------
logprob : float
Log likelihood of ``X``.
posteriors : array, shape (n_samples, n_components)
State-membership probabilities for each sample in ``X``.
See Also
--------
score : Compute the log probability under the model.
decode : Find most likely state sequence corresponding to ``X``.
"""
check_is_fitted(self, "startprob_")
self._check()
X = check_array(X)
n_samples = X.shape[0]
logprob = 0
posteriors = np.zeros((n_samples, self.n_components))
for i, j in iter_from_X_lengths(X, lengths):
framelogprob = self._compute_log_likelihood(X[i:j])
logprobij, fwdlattice = self._do_forward_pass(framelogprob)
logprob += logprobij
bwdlattice = self._do_backward_pass(framelogprob)
posteriors[i:j] = self._compute_posteriors(fwdlattice, bwdlattice)
return logprob, posteriors
def score(self, X, lengths=None):
"""Compute the log probability under the model.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, ), optional
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
Returns
-------
logprob : float
Log likelihood of ``X``.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
decode : Find most likely state sequence corresponding to ``X``.
"""
check_is_fitted(self, "startprob_")
self._check()
X = check_array(X)
# XXX we can unroll forward pass for speed and memory efficiency.
logprob = 0
for i, j in iter_from_X_lengths(X, lengths):
framelogprob = self._compute_log_likelihood(X[i:j])
logprobij, _fwdlattice = self._do_forward_pass(framelogprob)
logprob += logprobij
return logprob
def _decode_viterbi(self, X):
framelogprob = self._compute_log_likelihood(X)
return self._do_viterbi_pass(framelogprob)
def _decode_map(self, X):
_, posteriors = self.score_samples(X)
logprob = np.max(posteriors, axis=1).sum()
state_sequence = np.argmax(posteriors, axis=1)
return logprob, state_sequence
def decode(self, X, lengths=None, algorithm=None):
"""Find most likely state sequence corresponding to ``X``.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, ), optional
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
algorithm : string
Decoder algorithm. Must be one of "viterbi" or "map".
If not given, :attr:`decoder` is used.
Returns
-------
logprob : float
Log probability of the produced state sequence.
state_sequence : array, shape (n_samples, )
Labels for each sample from ``X`` obtained via a given
decoder ``algorithm``.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
check_is_fitted(self, "startprob_")
self._check()
algorithm = algorithm or self.algorithm
if algorithm not in DECODER_ALGORITHMS:
raise ValueError("Unknown decoder {0!r}".format(algorithm))
decoder = {
"viterbi": self._decode_viterbi,
"map": self._decode_map
}[algorithm]
X = check_array(X)
n_samples = X.shape[0]
logprob = 0
state_sequence = np.empty(n_samples, dtype=int)
for i, j in iter_from_X_lengths(X, lengths):
# XXX decoder works on a single sample at a time!
logprobij, state_sequenceij = decoder(X[i:j])
logprob += logprobij
state_sequence[i:j] = state_sequenceij
return logprob, state_sequence
def predict(self, X, lengths=None):
"""Find most likely state sequence corresponding to ``X``.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, ), optional
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
Returns
-------
state_sequence : array, shape (n_samples, )
Labels for each sample from ``X``.
"""
_, state_sequence = self.decode(X, lengths)
return state_sequence
def predict_proba(self, X, lengths=None):
"""Compute the posterior probability for each state in the model.
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, ), optional
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
Returns
-------
posteriors : array, shape (n_samples, n_components)
State-membership probabilities for each sample from ``X``.
"""
_, posteriors = self.score_samples(X, lengths)
return posteriors
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Parameters
----------
n_samples : int
Number of samples to generate.
random_state : RandomState or an int seed
A random number generator instance. If ``None``, the object's
``random_state`` is used.
Returns
-------
X : array, shape (n_samples, n_features)
Feature matrix.
state_sequence : array, shape (n_samples, )
State sequence produced by the model.
"""
check_is_fitted(self, "startprob_")
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
startprob_cdf = np.cumsum(self.startprob_)
transmat_cdf = np.cumsum(self.transmat_, axis=1)
currstate = (startprob_cdf > random_state.rand()).argmax()
state_sequence = [currstate]
X = [self._generate_sample_from_state(
currstate, random_state=random_state)]
for t in range(n_samples - 1):
currstate = (transmat_cdf[currstate] > random_state.rand()) \
.argmax()
state_sequence.append(currstate)
X.append(self._generate_sample_from_state(
currstate, random_state=random_state))
return np.atleast_2d(X), np.array(state_sequence, dtype=int)
def fit(self, X, lengths=None):
"""Estimate model parameters.
An initialization step is performed before entering the
EM algorithm. If you want to avoid this step for a subset of
the parameters, pass proper ``init_params`` keyword argument
to estimator's constructor.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, )
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
Returns
-------
self : object
Returns self.
"""
X = check_array(X)
self._init(X, lengths=lengths)
self._check()
self.monitor_ = ConvergenceMonitor(self.tol, self.n_iter, self.verbose)
for iter in range(self.n_iter):
stats = self._initialize_sufficient_statistics()
curr_logprob = 0
for i, j in iter_from_X_lengths(X, lengths):
framelogprob = self._compute_log_likelihood(X[i:j])
logprob, fwdlattice = self._do_forward_pass(framelogprob)
curr_logprob += logprob
bwdlattice = self._do_backward_pass(framelogprob)
posteriors = self._compute_posteriors(fwdlattice, bwdlattice)
self._accumulate_sufficient_statistics(
stats, X[i:j], framelogprob, posteriors, fwdlattice,
bwdlattice)
# XXX must be before convergence check, because otherwise
# there won't be any updates for the case ``n_iter=1``.
self._do_mstep(stats)
self.monitor_.report(curr_logprob)
if self.monitor_.converged:
break
return self
def _do_viterbi_pass(self, framelogprob):
n_samples, n_components = framelogprob.shape
state_sequence, logprob = _hmmc._viterbi(
n_samples, n_components, np.log(self.startprob_),
np.log(self.transmat_), framelogprob)
return logprob, state_sequence
def _do_forward_pass(self, framelogprob):
n_samples, n_components = framelogprob.shape
fwdlattice = np.zeros((n_samples, n_components))
_hmmc._forward(n_samples, n_components,
np.log(self.startprob_),
np.log(self.transmat_),
framelogprob, fwdlattice)
return logsumexp(fwdlattice[-1]), fwdlattice
def _do_backward_pass(self, framelogprob):
n_samples, n_components = framelogprob.shape
bwdlattice = np.zeros((n_samples, n_components))
_hmmc._backward(n_samples, n_components,
np.log(self.startprob_),
np.log(self.transmat_),
framelogprob, bwdlattice)
return bwdlattice
def _compute_posteriors(self, fwdlattice, bwdlattice):
# gamma is guaranteed to be correctly normalized by logprob at
# all frames, unless we do approximate inference using pruning.
# So, we will normalize each frame explicitly in case we
# pruned too aggressively.
log_gamma = fwdlattice + bwdlattice
log_normalize(log_gamma, axis=1)
return np.exp(log_gamma)
def _init(self, X, lengths):
"""Initializes model parameters prior to fitting.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
lengths : array-like of integers, shape (n_sequences, )
Lengths of the individual sequences in ``X``. The sum of
these should be ``n_samples``.
"""
init = 1. / self.n_components
if 's' in self.init_params or not hasattr(self, "startprob_"):
self.startprob_ = np.full(self.n_components, init)
if 't' in self.init_params or not hasattr(self, "transmat_"):
self.transmat_ = np.full((self.n_components, self.n_components),
init)
def _check(self):
"""Validates model parameters prior to fitting.
Raises
------
ValueError
If any of the parameters are invalid, e.g. if :attr:`startprob_`
don't sum to 1.
"""
self.startprob_ = np.asarray(self.startprob_)
if len(self.startprob_) != self.n_components:
raise ValueError("startprob_ must have length n_components")
if not np.allclose(self.startprob_.sum(), 1.0):
raise ValueError("startprob_ must sum to 1.0 (got {0:.4f})"
.format(self.startprob_.sum()))
self.transmat_ = np.asarray(self.transmat_)
if self.transmat_.shape != (self.n_components, self.n_components):
raise ValueError(
"transmat_ must have shape (n_components, n_components)")
if not np.allclose(self.transmat_.sum(axis=1), 1.0):
raise ValueError("rows of transmat_ must sum to 1.0 (got {0})"
.format(self.transmat_.sum(axis=1)))
def _compute_log_likelihood(self, X):
"""Computes per-component log probability under the model.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Feature matrix of individual samples.
Returns
-------
logprob : array, shape (n_samples, n_components)
Log probability of each sample in ``X`` for each of the
model states.
"""
def _generate_sample_from_state(self, state, random_state=None):
"""Generates a random sample from a given component.
Parameters
----------
state : int
Index of the component to condition on.
random_state: RandomState or an int seed
A random number generator instance. If ``None``, the object's
``random_state`` is used.
Returns
-------
X : array, shape (n_features, )
A random sample from the emission distribution corresponding
to a given component.
"""
# Methods used by self.fit()
def _initialize_sufficient_statistics(self):
"""Initializes sufficient statistics required for M-step.
The method is *pure*, meaning that it doesn't change the state of
the instance. For extensibility computed statistics are stored
in a dictionary.
Returns
-------
nobs : int
Number of samples in the data.
start : array, shape (n_components, )
An array where the i-th element corresponds to the posterior
probability of the first sample being generated by the i-th
state.
trans : array, shape (n_components, n_components)
An array where the (i, j)-th element corresponds to the
posterior probability of transitioning between the i-th to j-th
states.
"""
stats = {'nobs': 0,
'start': np.zeros(self.n_components),
'trans': np.zeros((self.n_components, self.n_components))}
return stats
def _accumulate_sufficient_statistics(self, stats, X, framelogprob,
posteriors, fwdlattice, bwdlattice):
"""Updates sufficient statistics from a given sample.
Parameters
----------
stats : dict
Sufficient statistics as returned by
:meth:`~base._BaseHMM._initialize_sufficient_statistics`.
X : array, shape (n_samples, n_features)
Sample sequence.
framelogprob : array, shape (n_samples, n_components)
Log-probabilities of each sample under each of the model states.
posteriors : array, shape (n_samples, n_components)
Posterior probabilities of each sample being generated by each
of the model states.
fwdlattice, bwdlattice : array, shape (n_samples, n_components)
Log-forward and log-backward probabilities.
"""
stats['nobs'] += 1
if 's' in self.params:
stats['start'] += posteriors[0]
if 't' in self.params:
n_samples, n_components = framelogprob.shape
# when the sample is of length 1, it contains no transitions
# so there is no reason to update our trans. matrix estimate
if n_samples <= 1:
return
lneta = np.zeros((n_samples - 1, n_components, n_components))
_hmmc._compute_lneta(n_samples, n_components, fwdlattice,
np.log(self.transmat_),
bwdlattice, framelogprob, lneta)
stats['eta_tij'] = np.exp(lneta) #without axis? #this is the only line modified by us
stats['trans'] += np.exp(logsumexp(lneta, axis=0))
def _do_mstep(self, stats):
"""Performs the M-step of EM algorithm.
Parameters
----------
stats : dict
Sufficient statistics updated from all available samples.
"""
# The ``np.where`` calls guard against updating forbidden states
# or transitions in e.g. a left-right HMM.
if 's' in self.params:
startprob_ = self.startprob_prior - 1.0 + stats['start']
self.startprob_ = np.where(self.startprob_ == 0.0,
self.startprob_, startprob_)
normalize(self.startprob_)
if 't' in self.params:
transmat_ = self.transmat_prior - 1.0 + stats['trans']
self.transmat_ = np.where(self.transmat_ == 0.0,
self.transmat_, transmat_)
normalize(self.transmat_, axis=1)