-
Notifications
You must be signed in to change notification settings - Fork 1
/
RSA.py
285 lines (237 loc) · 8.67 KB
/
RSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import math
import time
import random
# Print the Main Menu
def menu():
print("---- Public Key Cryptography, RSA ----\n")
print("1) Extended Euclidean Algorithm.")
print("2) Fast Modular Exponentiation.")
print("3) Miller-Rabin Test (True=Composite).")
print("4) Prime Number Generator.")
print("5) RSA keys Generator (Public and Private Key).")
print("6) RSA Encryption.")
print("7) RSA Decryption.")
print("8) Test RSA Decryption With and Without CRT.")
print("9) Quit.\n")
try:
choice = int(input("Select a function to run: "))
if 1 <= choice <= 9:
return choice
else:
print("\nYou must enter a number from 1 to 9\n")
except ValueError:
print("\nYou must enter a number from 1 to 9\n")
input("Press Enter to continue.\n")
# Get input from the user
def get_input(message):
choice = int(input(message))
return choice
# Compute the extended euclidean algorithm, returns the GCD and the Bezout Coefficients
def ext_euclid(a, b):
a, b = abs(a), abs(b)
x0, x1, y0, y1 = 1, 0, 0, 1
while b != 0:
q, a, b = a // b, b, a % b
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return a, x0, y0
# Compute the Fast modular exponentiation algorithm
def fast_mod_exp(a, exp, n):
result = 1
while exp:
if exp & 1:
result = result * a % n
exp >>= 1
a = a * a % n
return result
# Compute the Miller-Rabin for a number given the number of rounds, return True if the number is composite
def miller_rabin_test(n, rounds=40):
if n == 2 or n == 3:
return False
if n < 2 or n % 2 == 0:
return True
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(rounds):
a = random.randrange(2, n - 1)
x = fast_mod_exp(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = fast_mod_exp(x, 2, n)
if x == n - 1:
break
else:
return True
return False
# Generate a random k-bit prime number
def generate_prime(k, rounds=40):
if k < 2:
return None
while True:
number = random.randrange(pow(2, k - 1) + 1, pow(2, k), 2)
if not miller_rabin_test(number, rounds):
return number
# Generates a k-bit RSA public and private key pair
def rsa_keys(k, crt=False, rounds=40):
if k < 5:
return None
k1 = int(math.ceil(k / 2))
k2 = int(math.floor(k / 2))
p = q = 0
while p == q:
p = generate_prime(k1, rounds)
q = generate_prime(k2, rounds)
if crt and q > p:
p, q = q, p
n = p * q
phi = (p - 1) * (q - 1)
while True:
e = random.randrange(2, phi // 2)
g, d, _ = ext_euclid(e, phi)
if g == 1:
public_key = (e, n)
d = d % phi
if d < 0:
d += phi
if crt:
dp, dq, qinv = crt_pre_computation(p, q, d)
private_key = (p, q, dp, dq, qinv)
else:
private_key = (d, n)
return public_key, private_key
# Pre-computation for RSA with CRT
def crt_pre_computation(p, q, d):
_, qinv, _ = ext_euclid(q, p)
return d % (p - 1), d % (q - 1), qinv % p
# RSA encryption
def rsa_encryption(m, public_key):
return fast_mod_exp(m, public_key[0], public_key[1])
# RSA decryption
def rsa_decryption(c, private_key, crt=False):
if not crt:
return rsa_encryption(c, private_key)
else:
m1 = fast_mod_exp(c, private_key[2], private_key[0])
m2 = fast_mod_exp(c, private_key[3], private_key[1])
h = (private_key[4] * (m1 - m2)) % private_key[0]
return m2 + h * private_key[1]
# Tests Extended Euclidean Algorithm.
def test_ext_euclid():
a = get_input("\nInsert the first integer: ")
b = get_input("Insert the second integer: ")
gcd, x, y, = ext_euclid(a, b)
print("\nGreatest Common Divisor (GCD):", gcd)
print("Bezout Coefficients (x, y):", "(", x, ",", y, ")\n")
# Tests Fast Modular Exponentiation
def test_fast_mod_exp():
a = get_input("\nInsert the base: ")
exp = get_input("Insert the exponent: ")
n = get_input("Insert the modulo: ")
print("\nModular Exponentiation:", fast_mod_exp(a, exp, n), "\n")
# Tests Miller-Rabin Test (True=Composite)
def test_miller_rabin():
n = get_input("\nInsert an integer: ")
rounds = get_input("Insert the number of rounds to execute (default=40): ")
print("\nTest Miller-Rabin:", miller_rabin_test(n, rounds), "\n")
# Tests Prime Number Generator
def test_generate_prime():
k = get_input("\nInsert number of bits (k>1): ")
rounds = get_input("Insert the number of rounds for Miller-Rabin Test (default=40): ")
print("\nGenerated Prime Number:", generate_prime(k, rounds), "\n")
# Tests RSA keys Generator (Public and Private Key)
def test_rsa_keys():
k = get_input("\nInsert the number of bits for the module n: ")
crt = input("Do you want to use CRT optimization? (Y or N): ")
if crt.upper() == 'Y':
crt = True
else:
crt = False
rounds = get_input("Insert the number of rounds for Miller-Rabin Test(default=40): ")
public_key, private_key = rsa_keys(k, crt, rounds)
print("\nPublic Key (e, n):", public_key)
if crt:
print("Private Key (p, q, dp, dq, qinv):", private_key, "\n")
else:
print("Private Key (d, n):", private_key, "\n")
# Tests RSA Encryption
def test_rsa_encryption():
m = get_input("\nInsert the message m: ")
e = get_input("Insert the exponent e of the public key: ")
n = get_input("Insert the modulo n of the public key: ")
print("\nGenerated ciphertext c:", rsa_encryption(m, (e, n)), "\n")
# Tests RSA Decryption
def test_rsa_decryption():
c = get_input("\nInsert the ciphertext c: ")
d = get_input("Insert the exponent d of the private key: ")
n = get_input("Insert the modulo n of the private key: ")
print("\nOriginal message m:", rsa_decryption(c, (d, n)), "\n")
# Test RSA Decryption With and Without CRT (Total Execution Time on 100 random ciphertext)
def test_rsa_crt():
p = get_input("\nInsert the first prime number p: ")
q = get_input("Insert the second prime number q: ")
d = get_input("Insert the exponent d of the private key: ")
if q > p:
p, q = q, p
n = p * q
private_key = (d, n)
dp, dq, qinv = crt_pre_computation(p, q, d)
crt_private_key = (p, q, dp, dq, qinv)
print("\nRSA without CRT - Private Key (d, n):", private_key)
print("RSA with CRT - Private Key (p, q, dp, dq, qinv):", crt_private_key, "\n")
k = get_input("Insert the size of ciphertext to be randomly generated (number of bits): ")
iteration = get_input("Insert the number of ciphertext to be tested: ")
input("\nPress Enter to begin the test.\n")
# Begin the test
decryption_exec_time = 0
crt_decryption_exec_time = 0
print("Test is Started.")
for i in range(iteration):
ciphertext = random.getrandbits(k)
# RSA Decryption without CRT
start = time.perf_counter()
rsa_decryption(ciphertext, private_key)
end = time.perf_counter()
decryption_exec_time += end - start
# RSA Decryption with CRT
start = time.perf_counter()
rsa_decryption(ciphertext, crt_private_key, True)
end = time.perf_counter()
crt_decryption_exec_time += end - start
print("\rCurrently Tested Ciphertexts:", i+1, end="", flush=True)
print("\nTest is completed.\n")
print("- RSA Decryption without CRT -")
print("Total Execution Time on 100 Random Ciphertext:", decryption_exec_time, "seconds")
print("\n- RSA Decryption with CRT -")
print("Total Execution Time on 100 Random Ciphertext:", crt_decryption_exec_time, "seconds\n")
def main():
while True:
# Ask the user what function wants to run
choice = menu()
# Execute the function requested by the user
try:
if choice == 1:
test_ext_euclid()
elif choice == 2:
test_fast_mod_exp()
elif choice == 3:
test_miller_rabin()
elif choice == 4:
test_generate_prime()
elif choice == 5:
test_rsa_keys()
elif choice == 6:
test_rsa_encryption()
elif choice == 7:
test_rsa_decryption()
elif choice == 8:
test_rsa_crt()
elif choice == 9:
exit(0)
except ValueError:
print("\nYou must enter an integer\n")
input("Press Enter to continue.\n")
if __name__ == '__main__':
main()