-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlflow-job.py
100 lines (83 loc) · 3.08 KB
/
mlflow-job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Some imports you will need
import mlflow
import jwt
import json
import warnings
import sys
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from urllib.parse import urlparse
import mlflow
import mlflow.sklearn
import logging
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
client = mlflow.tracking.MlflowClient()
experiment_name = 'test-experiment'
experiment = client.get_experiment_by_name(name=experiment_name)
if(experiment is None):
print('Creating experiment ')
client.create_experiment(name=experiment_name)
experiment = client.get_experiment_by_name(name=experiment_name)
print(experiment_name)
experiment_id=experiment.experiment_id
mlflow.set_experiment(experiment_name=experiment_name)
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
# Read the wine-quality csv file from the URL
csv_url = (
"http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception(
"Unable to download training & test CSV, check your internet connection. Error: %s", e
)
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
my_log = "This is a test log"
with open("/tmp/test.txt", 'w') as f:
f.write(my_log)
with open("/tmp/test.log", 'w') as f:
f.write(my_log)
#run_tags={'mlflow.user':os.environ['DOMINO_STARTING_USERNAME']}
#Change user name
alpha = 0.7
l1_ratio = 0.6
while(alpha<1):
with mlflow.start_run():
print('--- Start Run ---')
print('Alpha : ' + str(alpha))
print('L1_Ratio : ' + str(l1_ratio))
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
print(" RMSE: %s" % rmse)
print(" MAE: %s" % mae)
print(" R2: %s" % r2)
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
print("mlflow tracking uri:", mlflow.get_tracking_uri())
print("mlflow tracking type:", tracking_url_type_store)
mlflow.log_artifact("/tmp/test.txt")
alpha=alpha+0.1
l1_ratio = l1_ratio + 0.05
print("--- End Run ---")