From f97e7edff7c916153a4a1e7707ce57aa8412a0bd Mon Sep 17 00:00:00 2001 From: gitkrakenAMonninger Date: Tue, 9 Nov 2021 10:44:00 -0500 Subject: [PATCH 1/2] NKCross --- .../NKCross/NKCross.ipynb | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb diff --git a/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb b/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb new file mode 100644 index 0000000..f63ca24 --- /dev/null +++ b/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb @@ -0,0 +1,61 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d1e1394c-b184-48cb-aa98-978c8d770b18", + "metadata": {}, + "source": [ + "### New Keynesian Cross: Bilbiie 2020" + ] + }, + { + "cell_type": "markdown", + "id": "12982804-4e21-4e49-adae-2c27cc037fa8", + "metadata": {}, + "source": [ + "### Motivation:\n", + "The idea of the Keynesian Cross and with it the Fiscal Multiplier which is $\\frac{1}{MPC}$ hinges on homogeneous agents. In case agents have different MPCs, the dynamics change.\n", + "\n", + "Bilbiie (2020) creates an analytical framework how to transfer the idea of the Keynesian Cross into new keynesian models with representative and heterogeneous agents (RANK, TANK and HANK). As a result, the exercise affords analytical insights into monetary, fiscal, and forward guidance multipliers." + ] + }, + { + "cell_type": "markdown", + "id": "5fff020b-2b55-4662-992c-36e2a7f7c814", + "metadata": {}, + "source": [ + "### Reference:\n", + "Bilbiie, Florin O. \"The new Keynesian cross.\" Journal of Monetary Economics 114 (2020): 90-108." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c65d322-08db-4072-b5ea-e68bfba43365", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 997fca0925d4247b10cd1dc117120b4dfaef4f7c Mon Sep 17 00:00:00 2001 From: gitkrakenAMonninger Date: Sun, 14 Nov 2021 11:07:01 -0500 Subject: [PATCH 2/2] updated --- .../NKCross/Fig1_Bilbiie_2020.PNG | Bin 0 -> 24863 bytes .../NKCross/NKCross.ipynb | 131 +++++++++++++++++- 2 files changed, 127 insertions(+), 4 deletions(-) create mode 100755 models/We-Would-Like-In-Econ-ARK/NKCross/Fig1_Bilbiie_2020.PNG mode change 100644 => 100755 models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb diff --git a/models/We-Would-Like-In-Econ-ARK/NKCross/Fig1_Bilbiie_2020.PNG b/models/We-Would-Like-In-Econ-ARK/NKCross/Fig1_Bilbiie_2020.PNG new file mode 100755 index 0000000000000000000000000000000000000000..f46b785302e1be2175216d8308b4afd1314813e8 GIT binary patch literal 24863 zcmce;c|6o>^f>+&S-NP^Vu_Ni#WLAqWGRJYsjOq2vSk^BAzOsFmF&jY$(FGjM#$O? znL)O}NOH4}u%KfeEd|LE1cpXEGfd(Jt}dCueIJv~j1BfLi-2;#V- zb?X5HF*-odp?+3o&=Tk1R|)=O@O+?o6DsXKI|n|P9B$~|fS`)#KYl$t48GaiwNRcA zbixb%$MDVm+*1fbSKYaF!|b2+R1&~ zsM7YWajf7S3HA7vi*Iy9d1XojjSBP#+ZuNk9Dj_88ncj3iiHl2zUP?@9{sK%|I%`h z_1@oM&G-;59i5P~kG{8BdVcE(q^{SE&g^)0`)(u+-8J)DQnub4@y~1+@(wt=1 z`a@Rc8BhOy`NJIGxs6GfSom7&sX4KbzWlWPUkT8*D_`esTx4Hen85%+>WKf}2f>|M zk}{a@2PC#O_O2CG<7AvV&jUeUd~(o=}yF_$OAvjJz&tp8We=!vA+*?x-5{dqKKz98zRA!cj8^iZNZSeN~C%f}Ii z4BzQl&1|j=755=a&3*kM)$_YlKDX=7CO@+RoobFbE1MShGdm*crh(a}X7=j7pY>&D zF_AQwB9C%+@4a7J!Z_@dY@3BAZk{Ho=g1CAmpiT@g1BK;N!eT5=jd%% z5yEZDCd3OaQqef?6RFG+|IG_0hUM^5ra71@OVfC3=Pt#z0!|`?8(1CIBMQ%OoQ~V6 zYkEz3^&io#BX0#)npP6a&hECMo@Lb)Mg5JRaYMe!`Q87Gg~>6ZciFgU#b$ubo(*kT zTe641S_yqzC@4{S_ve3uKB5ji;6OPRW=)-J=cS!CqMZ0^-e%q{E3bs_{clP)1iCK_ z#fgN8Bn;yAd+OVYjnv2T3uME81Gv#TBJZ*N=n$2pY9VpJ&Aw50W0pfBUI}g52bAX4 zOe_fh&-go1A5qGA75tyBGQM;9_YRj_gnF`yM65lX+=&IA3;zcLTe_Na0{Q#yg-W{A;EdpT`7y zRwhl)XRkpEIlJ!is><$R!A{C*DXJSIcPnpdoNh5{ag;Y-B%o_l3j6VvnZKV3-Fe22 z<6DR%;&221vB}&@!83qRv6lSsq$;DF71DF3`@iIm!E_w z=Jm!YIpKl!k|Xv;J84T^RsG35eB;{$77c zjBtne5t-BsQB>JOZS%F1MLGMz;YnqxQKpiV?ZB~Q$Kgr2iCm9+H{ZY51GZ2Bzfsi~ zmQm{0WxToeDJ=Q+sl*Mreq4IraKkqjE49wXoIpxlfsCr%$IP;Zv%gyvlLyNnO1Th*(`3qH!&SYP>R_s}il!;*?p zOL7KNpW!ZTj^Z%xWi~UHu~DmQUU2!nI1_2&dM5Up4b}Ik6`Os%nQHLv34q(5W~Yiu z7K00NEY*7}g9j65B>cKA^Y?j8J0r;Bw~gMr+F{}y6~lCVcF!i0blhBvR$a%Of8y>a z6cxm}_EXax#(dLpM;xtkETb@{r4rG{WpU(Rg+sa<7-i=)3={KPL4wA zt|CVlXU;xK%w>LAqJL59o0e(wjy_G6jPJ85%%+VjO(;^_k`wH~4bJ*< zX(nTLzNDNf?|Wh`+wqAo6iFf^1W6g3OCnudkcdYo?CM=RpC^s~Ue%>i$dOf)zn^;| za#cXgarCjOjZ(A|g8z}+KVO(+xR1i{2!qkIX`}WB)$`u1L=NkL5sMkQoRZGsBS#nM zC7!&tCRVD?D+bfMbq6_pXpJnbk3TNSWA6WHC9+!5s8JtT$zEwyZoy&ixOENT0@FBX ztWh_Sr(N)2v_hx-I)Aq>RWa`>&7F8hflPOM8(!`jGBYYp02QG+Ch);-3Tw=&`j(7f6H-CND%dc()DdxM^SS={KTD})FR-V+Z zU(t$NzqEP>5&8t!%;8khk93lrSfw}ejB+Di9Z;?vq$4&nW^~4=f_7d`>aj$e`}^X~ z_|380N5<6?;`>&@nGW~Wx@6ZIRx^AJR2@oik~<$Pef6w0sMizfTxW=zz9WZHf!YqI zhK1Aqwer%oDdG@*O%S9v+V7Y-$_Y;?t|Irx5H<4&bsvlmjWxFFEA76%Y>iD>t+~>l z>HEGrKozs@nP0*eDYH+nD_@$6wz(H%CP?;9{c?0I)t$N7O1ND3{ea%)+j%`Cp6$$H z;VZ}0L+y2CJY(*-p&rj9tP>ae{EsAM$$s2Wr}I*gM{M)`0y`_HII~RYDDBGwRZW3Z zQkkQ2p^nXN8l5RB09Pk4>9!j%YPBhU5?g!39$^Kfs1)D*|6a(9NkoRSVFd~mQTQc>wo+AK@o|5dN&NkHu^ou5&jugcAP zU{ZwL3fh#>ylLs`RzTDXvc95&%_!p&SVcKyk$=6*bffG9wy@{lP+&wmRF0MKPsLY} zoaC4Hd@73d3hvY%yN{_~kHCvaSq@*Motms7Hk_81WpM5rSO zCDFF?mx2NdFN@gb@{TMed79^YruMJR&t%Pk42ZzYmr$(3W z+KkK;&`_Zx_$#5!0f4=cS`8ZTjB@Xkf=`3mRv0#Wu|nplTHkbD6&bYlWk;KPESjHZ zfZC_PWW@4z_tokn?mFyO>F<+wK$vf>GFLU=j_bh%<9e=z?*@YX7s8{H1R@Nf2aIEn^EiUK0c?!$e++ z-YQGWbJ$lw8^Wh5(^@a$8R&4ZzM+O-l!s%+1yeqXw2MkJ5=MZ(^QiV8_RaDKzwaRY z>2Izbv2Qj$_yi_+QKsj*XTX(a*kA{9X=mmz6T@VKF>q8W7Sn&GfB6_CI3D;Oh$M_> zs22v%U9y>pkraIPDuW&zLJfb3IOnH@VDtv=8X9h{^_*dnK}*5Vc5rS%L#$Tya_m@}cXJ$lfgrupn1QdL|6&kzB3 z$uh}&uYxgacS79lkA^sP!IJnbicF6Mr#+h^6d?)*#U}x*eE`<|@RWGt&=IBae>q#& z6^y`22$US&uHzSb`cZdS*yyYcGLVbZ%a@by%*| zL@@f@1#4+YwTKrWj@YYZg1EW)U3JUCudUVgnnP>RU~DAywN&F%MZDc`K(GpsPVjxe z`KI+YzQZzT1iY9R;KZNs4?}=HxrrhCCJa)@NVwm) z{(H_Bm93ZhfXppjnc!?7kKh)h&r%wiITDU^*&lG&pLsLwFG0;Kvt#!138g$Ofjj0e3E;v_-thff->8_nEWVyEXi)0W^*Y0GrL@ zrSt*Jj{s;{J~T8gh*9S`SaVIAU^@~GG;07zM9q!WzBvIfMNMh|jf>@x@lrWxZ!S~{ z+WUZJ)`4|Ajo>-c&1MhDfJNM$oDfR>J<0$dU-;9V?U5XQN(zF1quJ~gU))D9zK;Ww z&PJk{%kl7!TL(%FnZU$1kO6B~`GImmIG|3!4ch-HHgpAG)BFt}Vc*1Fo(ASE+}`*o zhZo6Z`2A&}XH97|MKGFX!hMDu_B_z7|M}7ZU(%}TGmPabfbij$zur}W#g)Ntg{v*> z-zNbFzTbj%xP=|<4=^oHWU7GAQHpp5cWL;$f{A#r9T%biaF<*llxMTqKg<~vE&&*( z=D!K37XmzY{`^0>5v&ZHV{jsqOzsnCz{#44*uZ*5Qp?40A^gc zBO@$Jb$1br2Pb~f%fGc6+C87f(9BfbBAz32=pcf_S(K%tJ-vwPbm z*S-OhvlatGx*v*4K{J0*h5OX_C@XHzHZW7cv3C>2cW$?^9|XhPfO%*IfC6_RFGX6~ zM&mKl@AmA~nI7u{m4>$U;aQ3Ycq7yRv`DT0QE4<9p8672>EH>#EA;pORJyqwC>#PE z!qfZ|2pw?`sC4-j#10%c#F%g{;n|GRH$gl@Bz%@+j7M*P^Y%#!q@e*8VgUU6&+tJu zFwttZO~#?9o4n8uU_ zDHIjn#e#+fr696(WA0ZuP(3v;$^8hE40O<34))IfMoB|EY0ftZwLs1&`6xKIT z`CYJD@kD&)&%XeTv>Td;jag8W7hyC-wR~gjklg&t$ zzG<)apTZrjK)8}Vu1qpnZqskd@djla(^n+`Cv!|fQAouQ9{0y=#zn10OFiC~hm!J; z_K0Xlpx@jjOcn6n`hKtPD28R#)PXM-34BWPMG^eeN#Fz&!dyHbEOu^)76{po_LIV7 zO+ktX_GRCXJ(%lUN7ExqXZ=j5zz`uWV-R->*wEI-FDk!gK37RA?SK_mL+In(A-WPE za(sSSl#1);F(~O-B-pwDQ-wZxf-;X40Jxnf^ve6Ynjn?j&SM#C3FGwv=)23#bBwS> zbGB%S-XFHAgT~6Aey{9;3?VT=Ad*te6X!Wt#YyTnMhJeeBaW#=%x&*H)efp@tCv zeA$|8Tc3^8um*f(4@WcqRSCosc;I-s!vMEHP&@azIJ6JW)t6gii-vTCS`za(zPy(2q51? zHO}z7kYjn6R?1oi1}b3Zve@hql8SFCIBXTMR}-t)p+gink3s-@wCgkl&Ap=B_2CMa@aE#yvG8M|K)K! zu5cYt+Mw+qrTP7^j6$ScsPAM%=JP$E3&W}Mc%JLfMgb?b$q5l{*b{uv`uc1`S&PeH zp<(j|mCcsTbxUA6nC*)-AVVn$Z5&i=j0oM`{zv_&_O%_T>s`Ks3Xr06uv%bUtshX^H2e?e55*RZP_uCet%Q!SDt) zy(rW@NOxkAY0C#Ys#L^WltD5YCDy@kur7#aEL4T?S4GLptL~kW?(m+p%3~&084WVc z5)Iou+#ja5Tt6`k>BR$MbgFW(7>MZT+|BX9`Q^99EUWIv4$U$G1jzHjEFnBLv0!r} zaQ29!S!DoF6i`g<5VXelV9Rx5j_%l3rqsDG*-&375Y}iADRl&-n`~cZ;qW-}XxA}9 zHgpiO0Zu~40$Crz6PV~^Lab>bi9W z-z)Z-VC$$D6XV=vafU52)}0w~mF>~`wagQgEVubWQng*6u3XpbtL9;#;#_fPV-|yB z6ouT4_AC>lhRXf!ZAY)$Xs0ll;Fpg>lj&XxVPWNPRAja6M0R`$eMkZD7%&K#HHDqH zbr--9_yVE52g(9cjkF+~sm>9{S4gp0V4&0?Af$~RXcep@B#M7>am?V1^WDc_uQvMu z@UaB2^*3VTO&t>cvM|R5x>2tIez*Yt!=3FF>5MR_K=Yy806$9pETI*M{)rlb^uQkH zPEKnyy~2$o7dsE41vGv#4XaMDgEKhdZnZkXCb3wkR=}lq{Sk(|9M4b=woJ2DZhSh% z8c8c%f5?ydnKA@6jJqjlXPq>xa@k~(k?-Z-`vzE80CozuLQ7<+VV$(!--PvSa6)e< zL@}g+&>IaOj;-@021|=swz6l6xg2Xbf+v8LV!n7P)=xVHEw77Wk%n}b=ifan9tE0= z5C&Q$z{haM0N0EZ%rD?TW5{TM!nYzZcFGLsr+_KX zpB_XoGN)qaob+ud>vn}1btHB;{T0m6q2*T?$!h<@P}78h4J#s8q4sKVl-XC%4-i$Y z!AZD~5e4Dk!QNBOv!%MH*x}eMSim_nS^IOj-Ig69dg-XDPwEXTC?8NdTWI*1i8w*7 z4q0@ImT;=gKumO1GQ)9TRs^uG{9Kf_hgJ&YO5H?pG7YQ|=Fa>@2E+hyafCm1NqSGa zApulAo8wl^E*G>4T$OU%@f|0Gf$m&^Z>VqakzU`ZERN>OtvqV_xkM@adOxA%y2m*v zEdhXG1eR)5$>gjC!A9}$6QDtWU(J#LMnN&N4F9jaj!S=He$JE9x}SoxdQ|CAueuAz z3bS_7TX#RVR9-s!;bb?YcgI^=@x|5AD=o!A^Oc2NXo2SIBe)s#n_ldu*s8+nHHV}~ z5R`#XmDnG^fztT=D=e-cO&4Is2 zB?ii&rG9T_>m-a4(_SU6WA3+q@c)iZ#c^JVh@VQ{YFtV_if#BT|8j9~OJSNZ6##iI zjL&0CT#QGP{1xL;IQx+xq>x!?4J5@byXuvtoavkQOWf1kn|?BuX^r0;>-o`FCn!Pp zXeb-4qx)u%AG+{X)zM$gk8C(qOVjsF!5(9|2aZ1X%2hEe?=Z>BbLW#c7as7%;5ZDw z7`qcCC6OXm=njDvw902XRyl!|ECHN3%q8MGSiO>>=$`HSNlE=9HA&02EN9wzJzmHJ zE0am@m}Q0(7fsB4wKOj#%C4pbcK8_$Rae=yG%eoCmzdA2I)%etX2js>-iFR1isOtA z(buHU(SKPLM5B@%()ZWTkKv0{cBs#is3>N2;G-7qD<4)zj9MYH*1bL%X%b|b`j30i zj_nwiDH6t)?P#2Kw6}YAtO`^_3nWY9memDPA!@bb7n@pd9{Z89xUI~ozOkjDz>wV* zZ`u@s8p;XS2+j0n%akD_mX{v;l`4;Y6e}Ay{42W|A_ak;*vMigo>i>ovXYpn z&ImE``LIeuY8F2nuWTgIrwF0Ui+<_dyVu7IJnH)jJ_lkR7u9spmxYgs-kVgi;q#JC zj=+vYR-4J3WV5xgJ`He;8sx7f>Hq0NPnMi_a! zc(bHxh{|yUTkkQeeIvgpeUG-X<Hs+{R#4<$l&4{Ufvw^K2kFNlR(K~ku zUnz8gB8hTPvQT5r1DGt_@bQm1x*&S;G zp~8!6lixqz5s^*H#rXY`&%v6!hg2PP@9+L0{?X5Wv(ec6jxO2XcAK_ny*Cz~bX~M( z^ma#=^UN-d@L=qy-PTkC4SO|uEKmNaJ@3lC>&4<_^Px=N8&4Cx6){|t2ynVo$X*DW z*Yio`@5bk@#__L;@^^mC^kr55;{DeQ_E`VOlD9U|(zGgSW@G!kT?q$fCt=bX_14np%trZAwDg$cqU=l{*EjE4f$Ha8y))X6 zi=q`j`_HV?>Fgy=^&s0@N{iZ)Jfw3ix0p}B>4k8RIp&m2zxHi& ztm2*9h|y0*qiq38Ot|oc9ni(yBv??HK`|F1pByI8Wz|d@lbgh;^O;=-{WfG|{ z#cpiWYwuQmb^Y=?3HtXsy4N@VUK^QZx^t=0xd^}kQ+4kna`^PMi{Bl|q^tbpezG1` zbnjp2c^C(z*aw8M@WnCsuf;j6rI8(~k zO$)ZzyK%7BwQwc`n0cTctoXLB3sq1dvR0=G|hti|r99nTq zx+Uq-$a4;mVP{F>N2{ohjdVG)xr~f(u6wqsO+Tg0$SdZyY&DR?Gdc!h^$3#FNspr@6Ttulc zAj(%lsd>RA;@1{Bvro~bNlI*RSEZETJ@DP&ToZlXaM7iptLR96PTD=3i+hx zM(kUIE&i&vLx zf_7@8#xrnpCG*=OmPwVCWpusW;?*ia>5@i=>DwH)tEZ~#XpUA?>GA2V2p#i!s~Wnl zih-r80lPie-jw@3oFo6P!!k}v_xH|E?lxK(UijH|O!i?WjdPhmTG}jJjLgWbPG7Sm zu;ffvd!@`^H$2Tbgy+hK&|i}FOmMpS4LiQ`Yo#($^wps)9jsN=sdBp$7EV8VkVD-~ zuE9>$#HCDJwGR1$@3`417e-6hT><^ENKI3 zfv+I=13B$SeC-RA%T^VZSw+fgY4HNm6qSUR0d)OIJ|rtz8cr8V-&ijlWSb7Fo|Y@bQMygTdRqg zi9qIzsOglOz-Xh}G&XS2ZdD>vaC2t$c6yNSSm81m=$r;3BwaD`RT-ArF-$~cHzHsA8Zu>Cv;h$4;sxy18s&yr$ zr39D3d$o^gqxVvJk{v(SRn7h469T4OR4I)1dG;=%NU6h4La9n;8Ly|3zWuHbYveZ~CvRn+;CYViK7$ zqq9uaVKEp|J7)bI;f6?=qSW=pn+>JKdY&qpd+EEKAJC^U3g)CpV109NUGZNthCY8N z@)&)4{+e7X55f`nqV+-{@<7guq5=M(J^Kj9nZs+hNq50E$Dp}xY<4w!yG=n}JB{1ra<A00*0jfabjIR^K7b1d*20qU_#rUEuuIs zZu!SC`pF3oGRQco`EC~$Z16tlyVku!B^d2xZtk|8X>?!Px2rr_#KKOmER)!&4kKc> zzsXHf+o$&_%fzc^@;%`wIG7BhIf% z?u6GxEBtk%mA89-rE^E1uF2vf%F@kAZR*4XJ3cKCM8dn2-od(66qU1DhIu&Rtc5m< zlF?D4y)L_*%&nxrwrst*A{LI-#x4JMn;5%uX=pqy$WsJNP5>#MjS2%ThdjPk8qPqq zFSbJc5PWlhmi9<+&ul5~qz@r*K|?|bQR0jc83T(*`LS($*m@al*D?cFmFe3C}Xp2(k%R^9KD+U>jl>B_$TKV~8i#fMTEpfpe> z0N<3J+vz>0yuGx)*tA{~wMXg#*%GyJHiu@khwl>3ua+IL8M6<&4P^mOfQ|vF zjcdVJbAHPwspry}Aq9{$=FasM5(jDU$WpvhNEhUzxizWrvMcE@I-g8mDX_Qr9T&AHeOFw)T)+bR6d1EG*4Akfz)j* zuV+beKQBYD;IZytgV^3v2K;2VS0c96Ed-Kp_T>Wc=|*|{Z31SidkEJqQZAA^^)Gag znPM@3a}5vWf+d{TjK&Q3&KxEht(=8|8@alJLklOItnPj{lgDcYy52M=xTbcjf_hls z_Blnf3E>ARWje)}WAA>M*r+J}cE%r|$hDQn{ZXNp-S;^gzGExGVzJ-B|+^8s}fFTk}4JGkL3&f}-p^v=F=tpE8<Pj=o3dL+5iX z;wyf?NxUn97*sRXH2FGtt&KX!Of>xNeFxlFfooP(;N$BuJJg3_AY}*1PuL z65X}jiQbPENCk<#Abn@r>K@emtQgcBE>>wqF3C)=`(5B8d4EjI(GBFI*l>ZIWEBPE zXA&GC$lGCbe)tQg^f|DWKh8Zdrn>t@sjp7db&kM~iF0Lq^nOnJSWwVTDnNR3xAH8Q zhTMr_7fGn%EBobtgoY;RomURi`2#9X)-AH}EuJ3+HO%FVikA~|)D^V{#!Ra*3v^pP ziicN;l(aI`?2&5RzVd!8Xyv*$-~v}iZ}!;BGE`DEVpecybW^JO|ZGZbZ82SI}sU>l%c8YPx~wZ3Mh__yq*KdhY*cjV6fhC9DVaJ_;6hOOeKArV6m`YNufMHlAZtiw>n6I? zhEb7C;U_I*x*&vXp~qC#V}cc?$?m=ZKcC7(WbZqW!Xtk5l)c1PZrJY9OqCfxpH6m# zxI=U$8}9M*otucf;oMVG%0~!e@h)N}{^EbDqXezR&T~slM7De`i~wo9ku7TJsnIu- zcI2xmke9OEX2_B>4N$XX^MZ*as}%7sh@NbmJLH~mC6cbJ`! zxTqR8#ijM?cmIirc_r&gJICX!+OFcQ~;3I+k!VSetF6i>$)opDB8w^$**J(1nj8xTe z;aM}-9edA2yu>seU<~E!Vk3bSH+32b7uSsA&Ip?qZz^O0iyuatc`!%MbE^xbJ$d00 zQ~A)$K^T?GYTCZ?x4D=Wz1;(V&%;GzSo zr^%lh;0m=B7`M-hoFS(GVCMlaq}Hv`$WjFt#W;LUC<+I{?${pA=6?VT@79r91K>iV zE8b-d0Md}+Yr2%aEw2$WBC_=hVvh&cffv%=n9AELni(q1IF6vNa)6QuJ*Q6TqYyXq z;MIH`1-|6EtK`_6rM4pZ!Sa9aBF<2(Vz(f*pu(sYk=7Ab;g}NM4xtjx>4)m_t|Kjj z?vi-RI9~>}pm$L%0ifUZBX#W0LHObrkSU?0Ecw}oA-KQV5i7pS2jFWc@ICixrMFSg z0{w~W4d8?W`QC2igU(Xr2P?p>#%RP<$5xd7)W!Qzr>DF=owYOj)aF8~EVWHPLzyOj zU_kGaN}?3A*ppZtl;b$eZW{AI2^?lf>PS|e&DdCQ zb=MY^0zwFH?QEpo#EHFz9>a0gv|KmMEmaR0aZ1()_Z?VvPE7?R z5jM-QHz>2+G0t=h?lY$}{WY4DLAe4^3y{nO>I$QwhIPh9^_9J3SyIlGRwR5Kq13W& z`;4I+KhM1u>P`|GQK$~}olGDaxqKPE<(-B>*aRj!Ko*6gJ}9bTJE++qO4xl&;4qXo zTxDMExGy%GSnP(KxrE0^u41g`N#_fMdz5HtQ#iYPBxf4QC@{&@fIsvjSGRo3oBp~P z>pvV8wD~C1!j2WEWS^aw#T%n7g@WRv8C6~(w8h)FAA(o5A%YFK_ZVUJu>DXk=xmOB zI9IIL`WHxni7VYD#c$O(&ovJ$Kg0D_(sj6oX~!H;hj!i~nLmoAVX~B3A1SvcL?sF7 zESPyGVA}~YK_HJ>Kd^UF1J{dG^@&})6{weTgtz<(SVN$7L}%<>Nu8)LKSC3)z|`VW zBYn?`S~@Gf{Rhajaw0-=s4A z-DqSLmSAsG<0tx*kxpQVGipbF73J!lzn^b$jWl~PUT7qZ?p*GG{2^G=fvy=J-)_2P@8!!1dMRUe5+Yo6XvUOE2r|xsxOBde4B6)Zq$#(Q0~8 z(l)ivRZ|aCeiFPoXwNk&7YP%^uI+sfiO-s!x)|`wT$YU-6~63%&6y4{-F{b^gHq+c zI2=tGw;Xm*D4JjNEi(>W_WE8dhOi*mG)w0kby$Cw@P;=qA>EZ~)Z)@49ql7Xe&?Oi z2bQS(T0b8+=6)I*_}LoG?WB4O%Wm3k%gpq=@i>K3Y}MCC_?l$BzNh=`%&-)= zcQFZ*QOH_orhn%Q8JQU9et^7{yo}9yQ>Ck}hkIzQY`!_rcD-z|N`hCT>08s~G&|b! z{v0IpLZ~}4OB}z)*vmicBNDg9yc15uogjd7Vy<1^CFf8oQuX6~bzfSg0g7%DCNrD# z>-&d!Zn#wQET|3gA{>=kRZb_wyK>Q5Ui3}O8-MBZrFZ(1G^wlaH{|O24bRnFPE#y7 zz9BXKF)gYX$$S<(7V^h&`j1r^8Y;3`Y76GfdCp3kNF#tc}`(`_HGf2vip|vDp`htp=UxJ5F|hDwgF&HR~^Tb#ey&`7QdMRbD{0*{M6 zmVFikPa9c_TBF&SjV?#MAEvugU47))9DJ>ik?R|0KlfnfPEt3!tViXBEgG)@frCK0 z+-45_hy8BcVvD5hh^UT)Gsfu3XqIoZqxqO#SA7|VP*$!2qynl$hO^DKj#0Kn$V}YV zKnpu)0hj%KSKW2*HQCleKPrJWjlPSeZ1BK%cxOeuO+rs!blJBZfj-v2ee0>g%`vPF z?l%?XMCqw$sx?Zb`JZ=D3lYdHwk?aj#SQQ1}fjJ6?K%odg2=y*@XTo|6e=tnO^ewOlEiUgXl_5PnEIYahG-ZK1^lKjz7a7X=!Jv=FyU|gGpDQ`p z?0>}Au@wVj{e6wq;fo;tjXq8cHoa=9;1d+F2+7#b2DAy1Pd;t{Fo72Ci%4 zr;ZrFdw#U#I`!Gf@8w}Kcu-aNb&B&PT3!W3Ldd0pfQHvcAc@Fg*beDMySGh(qfHd( z)k8HR4iju3U?H!fewU;ENVH?O$we|FBtb-%fX3ytq4b%E|B^kzEAH_#f>Q0s&&MhG zVr1TMZ9otbM2LByhUEi-1N99d3_yX}zNEFj?1F|5R`~SQ}Jic_?e*e2_*6ed^I!8VNZK9fNi*q+KeKF*Yg13 z1##Lf5)1p?n?{X0Y^bfJnh9qs127BhHb04UqWImG$oLNAt^L7yQ~rM(P;gfy=mOET z*8r1@-Ua&cU0@C2TI1Qg$PdO!Hc_uUAE1(ESpX)cItn>HeLUn9E(&n!`e~eSTc*24 z8LRz*I`tAK&{~Kjl-A1!7c?(CpkCR4Tfo`p$3UKqNl?8O!scA1YlS&b#1-}4E!UZd z9HVv!eRU$zATi2p5mZ1e+@(tC+4s+za=y1k!vX-{+X`VWJt>z$wGXEOLeJtr(?R)y z&rc6ofsIRao+7Zlo58_U;l0&&4K_S zZp1`n12}l{x1H^Z=#Rm=yEtJN7L+%E@o3g!1yOtHlg}Pn2v4t!{)BaRb{IT(BeHQJ zy;YpCB~qoMPT>{|8&oGM!NrLQpz0=O{mDgm97z6n6Tm6wMPmnY!~~221xyuOicZ$i zYk%0U=~BrmKy{(%X!UCnsGjt%q~ zfKqVaiSA*oX-5uw<}2unmCD1gqPbse<#E3I>HMk@!sg$@qO`cYaEBB$)99+yh>LZB5a+mb|i+Kvhs|dY_C;-Ip@6cD^lPR3`sa!U>Sk zEXe90o_OTObRN3xOI}~%dhOn?kCpjA9n+X6B42v4$FjV0j=WZortXcy)(1H zu7JXI6n-3GdsN*QgJuqdr$oMVZ?j{w$5tT$N)NyYP)_(mi;vQm{Gt(_kbhI*$15~W zuw$YMKCacJw(qrTo@=hpJEqPLi;mBIcm~o>h?C&F0_e3@dBR%%E(&vjjRdjad@Y1$$9;Bw7_O#A$hMAz0aJJ61-h*?%^vH* z14?%R!7dlTNi}=*p?M(Te<#E5PNJqG&~5US-D}lIQY4(jdgCtd5yCUt;aFA}HRaRl zG;21XNBrNugBJ(l21Pa~lW;?Rb5QLBlgpRwRptB%6gS0QHEhShwfP_`s3F=SZuBPL zSxY39yT}G4Pod^7tPVmz*}$>p+<0fgn}+{|dty#!2#xEO>zA$mUrJbWk#Ph~6(U+* z+2DVP=12qIqrfAjI8zfZ{kIr%F}O%9#C|A%O+biwt6#`hLr`!6ugI7fRfCqdBG`z5 zssos79QQ&{Dw$|`NrFv1{PYKI0?!x<6CwlEA}S2{N8#s0Fw@lfu9l^H4aPluz^`=n zzqa#zcX}L7P{MCx7l51ny#UA_5F|oS`-M^KAQpsqNcDsb*>1wUME69ygmR#5ooF^n=zXymPf*wU;~a&2fU;Uf{G!-cDTwJW-UD#RASYM=ta*D zm!}(ph)cIrae;a3D{fsl^e+hVVgtuMJxh*5bCaH?1e+fov+lTYeixSKg>=n)Aqf_9 zxD0!0N5-!ph8d~~BW7r^G%+7)S#UROZ==Ud6z}fkOBDIlusrOm)Pwgnm9g3;XBa!m_%Ekb7f9Rh zqD(kX49w(h?J+{FBbNy2GT`I`Y)zhLx>JN5LNWrpdslWEwLO+uT(Ibw{*4s^$Ie@b zQHjB;b)3h$D+Q|Q)co-&(mW2lBT9AmJ^~zj%rQ<<4zlgCT$-Ko=O)kep;GKoW)}kA z(!BhY{*)k}Q56+N=*zj*k>^vb`#Py;Qmv(Nd!=htbl0(&*3tLE9aZ#O7?hNE-VQCb zbNj1GlPhuM+UP64?}9sB*Yo8d|q z;&r0lfL%I?ylhp!mxpn>4^A&FY1cU+Zqg9vrS8Me9rAB0jOKX#<9t{P;eQ)<7g=3k#6Nl~UoPFg;4Np5U@K~~j-=Z- zquBgK#pl}%P^^3~BVHb_+prSH=>h_zJfi+!1=enxD1Nx=q2eut*TqBFv99fgC1l+B zntAvYkDUNGM82bn0VZKJ0Fht z53_8q0VhQAO$7NDzX8^Tzxrd)EcSKRpk1{Tn+}_8Nx<@G4AoM9{(0)JuGP`yn;E0& zR{za}qy0A8lT46~DD)=bs+2L|{D=YahTzZ+4Cak>W{ z6#j7`Il`bQswA!lXQ%vPel`ZEsf6>`J-OwpV^olhMw^8Zxd;Up-iY7<7xm9Wo(G-mpDpy^srH6b!SaZN_N z7N=iZDb+AS-~j^$ltM72WE;sGxaPtrMW>)VFPuRa%^10a6(~Dmv2NITT|UU@i}9!r zFb&}Ohsz&xF*EBCCn?e(Z|PlRTt$jS7|(3hF_eYB(an&t`_CVQho7Jrwr?y8r|*-T zNOxFW_1$b00bgMY2MQgh+|GrfRLbUuCkE)Gbt!&PE6B+F30F4`B=2FvZ>)tVN_?lnL<|re ztk~1K_zkPzTx4U(=Ca=CJMjiwnI2fpyHzan;<|&VC3OKr7xP7A zZ|O%ioAr(B;Zy&?1Xt3IsqAizoP!nreqOmF;>=fAH+T%UF0miY^v{ytJ(0f#M-Q)q zGuik@Qj5aNiX#6>L`V74LT-x= z)&)6#DO`-BzYs6tGKC~og_YNFPB%uLFk2>XS31f)?K}W3dafHNTH>QrGE4#c1%od%)}`qSydGJ{u7f0pi+_HlCBKVXxNB;3^mEVJ>Qn4U^~ z?t=Z_=x}xSRp{l3*N6dfE5H*osv-yO8K|cNOWjf^;-`PzX!OEwDe?wq{`tKj5Q19Zy9}i3{xLF46PMybrnC*wrN7S?V^IbR2 zKzJN)w-etZEk3NmPO95e^(~g=XFglKK8>sIw5b9{=bVc8^>zEJ3ab`eg>1^>!iviEUJJY-8`J65m0e*qM352&**r7M=(aAZJ;LIgt zyS3X|7BF?Cy#|8V`zKpb&)#i-cU0}YM;`=DCp$#B9S#S7I;Y77?@3VwZ>%&~tij)w zc`Q94eukAgZv6Rn2+|!qIr%3pRMIi?*I!~_Jj5N<8$k>!532~P43jBPX?Z%elQEBK zTrSM#m}nPe2wu0d&fMKG{X-&$)1fwBT(j4?TKta({Z;?gnB6A(s1D_D1Wt-V-ya~H zrR=zKz@HTI`ry>o;W7oXtv{#y zt@SZ$4J^SEl>jJ>?N z1=cdtleCxjx_;~J`h)MDFE33 z1;0pNcSO6Nboj?;ANjiXdDpJ&{q;+6?aTSxpSQqvesE_MVGR@$uI7&RgU3$Dx#;r2 zkh2Y^_NC_biE4y;O6~8dizpaOU&r3wkv#p!O#HK*rd?-+qtJ+`p+C6;vV-{g5tUxt z39c@-Zp#o-UD~vS;l_^*`Wk(*^Yl}QE-r!EfZ_Ff^(a(Fxc@e zOL;x+p8GB5w$VQ=a@HSmjnt&(K+J&o@=YNySn0Q}3#E_0#_TSG1@}(6uR}j^rhZk- zKzwj78t9Tk|CCp#Mb^3MBA<&UOeOi`Zu0QIj=W2~#hU3#vV*XY`Rwbpf?W`7@~biE zY)Ky9cp)Ep$y#0r=#LwLXskk`zp@AcV&9(1`qXu2^@qDHtKNs2sK>e`k6rxuvwN@S z4nycokNa-st^cIl4}|$KW zh6AdMhzmY`Pyi3Gc=MNOOXH4{e%F21-n5N9YeNE32YT1=YD8p@Kc(J|nTm{(Oe% zLGOd%lvwCgg1%JY=X$Vmu<@syf9PH!1OEc8?_LNte`pas{`#G;{!OCaxdrp>W1D}e zLhk)f*Qd?U?$`R%>jjMkn#8-J-=NA0tE*zNmTIR}fB7;Ak_*oN=h&AWRY=Q=aN3Bi zaQM&ik$dFBy5&uqYIdjjblhLv9}RIhwH4)>ZO~B+TMi9w4n;{azwe4zUl%!Sc3KLa zMUM8mQXfm9RtN@h9x8WjiTtv(iq!aU{|`8ccyrC(E%U4XYpZo?zyshd>TTcVpl(GL7E2xhD-*7hjU$$yj&WLOT@FxeOanMrUtk|TIX3}(jPoPzx z=1joDL01K$I2hJ zHzj0P#v43h^N`tF#klXBpmLD}uBdu&@j07G)b?KQ!)AvY_?^jom7{wO6owDQqzQ8@ zo@C3X%1^R^*><@AYoex747n;LnyhoESWFj>SVDK#$%}m4m+WuYGCHljLK0c-8Y=_y z0*jP^U_Z_n5H3zfMI`2k2B~vFZ2eGC6U$1U_fja>#`SlJg#@E(n56IM`4;&kJ*l z!A$}t+cZ#SM?eCKu&(HW{hz-bxe3 z1d+-^hB?7v_bS4y#Qd5c&Qj6nh0j)RP%7gyj!}l92=Ylle-=zmZ5_`DX|}OJzJVc* zr|YNr2j)hum<9uG`d4vL-Z#wIDC2ZY|EDgFCLLE{S;DON; z;dDMvxF!L%N0+X z@WE7fiNXPQ^!pzqB!=K@jE}m4A^sGlXYJa1E5Kx?<|Ma#$ldRSPIOP$dQBMXE3+|q z?r)gW8rO5S+{z?!cs@!*fj4?#4h$e@A~n{r47U2l(NouHBR@|Vih|vTh1LlCc5eh4 z@9WS8YMZ-k)8@gam`i)|V-g%*icKCZ8!t4Pih~OOn6j%dc7PR1%yCt<$1fC{pA8uO zIid~E_*_P#^O@vR z6l+^ofRidz9K&Sn>0gyz(6{D`%R zJzap~D=-5|uMy8rc|si;SBm}iq$b+khxL3Vw2p-(;xr^n7hhnbf>juMIH(x_##pK# zf_sN&im$dgiG@~tc^3b&zR=vle~LP|HtDae>t6c!d2 z>1V~mQxk9m+?nMeQq1F8f2OAwS%~}Vd8IR(G829))P?P7Yf`ngI}}8k@j7X^mBXr0 zf|)PXtR~Ei-Jkb)NlhLfN@F5@xWcTAH(08HljTnRr5dS^GFq(7l3IQchVf=a9Ar47 z*`oB+)10^9Pxc_SG(1Hgx?s_@EHq|-b6Uw4;~kgIg*c2HRJ?{fO$HldPsny}?%Xn4 z!a)$Umyc0&WwKbbb%DrUfuxB_n^POhOYN^>Z+LLvNDO?tDW_+TvfSFXTrt2CiNtn| zCs7)>0*7?EWunX>?SpeWS9oh_6KutRa`1%FnXf9~;qQi7Yk`Qgk}zY(0DPOum)?j$ zGJ%=JKCufUKZ|!*s&-~t+T}jXUeHu%z>x726^<)$+Hb`>|3R6;dvYkFkG9IY!Z9b& z_7;cSC(sLc3l-xZM1suA{rcsKzpaf$(VIRE{&Z_bCSiz}>_Czt)Ig<-K{$gIa z0bp{aAfBZK&RB{Ns2E?mwghp#+aQffTpVea4+Tq%V_|8cIk)+?my1tQ2za3%6SOpU zlbp(vh~lXOE^yY6=;vLsFsyfAGH5Psg9<&@8P4*Ox`V)D80!nOV8usNs6rC$&C4I& zUHXm^IaWmZ{DIc;J_t;6OMh0F$0M&@6w7KfY3U+C4D~oJuT# z)+^DM;@)gnsx09q#08cnT#C~vz`o^-?=7WjwiUJ5Q;9>Mt?3j)k-D%6V{32kDJUYM zqm8uADWO`6N6Q|hllGOKD`zBI7BM-IYbgT~PpU;$bUXy-V&JzkHSWB=J?`iJEM}zx zkK;BYShw{SS&o=CBj9bv%(uYnSFbr1(rmcn5e{a}3BY`l2O4a=&5~z$$*7j~jCz!< z?Qi8$OvyDMGBI#PqFU?eGfQH}C{RW$>AeZ}^pO^#f>~6~zC=TBJj5i7@nslN`Zew( z`v~~LoujV&_uiZH4-`dxq;B2>Qoua-B;&v;Lw%5b`kT5CMD)=>nXljQ5Y{ZtAkom|$ zVwimexQhR~vjpy7kz6}$2_IkfR%De6d17H6n{_dynd=^K|S#WDbnT9Rcs7lBE))RHIw;iLYGY>h+k^;hkJDA`@NUl^Pl>>wC4)BjW88A_-=liS zIrf?M1k2g^K*vFoQ|VLAx22;*;CM(2s=LCg-k^QJCQTLQrTP@*Z@E4`r$TVO75L$(;S~MI3UHP~RZNk2{w9glXg*sa)mlCG zP%~fgZ`php6)5{_1HmKJKRHCEJ5qc92NLm`bn9Q)$2sw}9})OgsZGFSaVT`I zYvNzsAz9MSli{hTIiqX>i3L`+PvYZpD9mTpp*6Y9H5;$a3@)d^L5`@=>2nu ze5E`#a9QUH0v}<&Zs6>Ii{|u4E2lO_WilFQGgm!v($cGkkAL4e-XAyJg2ouIKOz}o#+jz|#6V9B(OjDr07`t$**U|s@I-BIO>IoOzW(@hnYV>vHTD<{lPuxgo3+@Dz65mi5zFa zn^-k|x`Nc$>x8yl%V-#MiTbEw3#Xvn^T74CY;u~r)5H%(F!;{lr6yx3>En0)f-eJ; z^X>_UQ+nCdVOarSE(~Ue`r2s}x81-T;1u#?k?>0uG}kx~W0dN)%Bg5u5@o;a^Txuj zy9Cpdx=Kaaml`(^Lo;ZO zI&M^4wGXs<3<1qaAm!+Kzk^+-_~htH+$}m~2xZf7|k%Y3~Bp2H+XC1pey8LkB{?8(<+A_Fm(l0v>cZEf7#v~EXoBq!#nwpc z-SW?R2SY2$q{klLB^lYzRcuRx~L zWw4m%oY=(K5snU9u_2t%fHD(-W*YjvFR$wQvshHP;}B*1yN%Vd^=s#%-uo@Dx=ukh z*?Y{hm7kk2@fzSO?!Y1yloBS0WjzaH*)#cP*)rtxhd*Tm+{K57C88}aiG`j;+Hq8= z$CqMMa2#q-ANxjXX#^t5b3T7M3e=()K;CO0!d}D#7GCc`xTZd8Zek}BB|Ma+jp)0o z&Ev4TP74=1yi`lHDX|Go5@lWztL6He=<|wp&iW+OwZMB=DL!%0iIr~*j-RNnDWm9` z6-dT}e@wZu+g`@6;|i+=9hrILCnuzKAyg(_KdQGTym~#%;L>Jaar}c5=K4uPOef85 zW2@J19t{QU;X@8NbG549ziZ)PKq7Cl$~?6R{=~USx&E_Z=~nj?>z1Jn6TtMeYD0a= z<^@oXx0RV&+l==<&MIJ{sM~*yrv#|#%P42;A7y>IfeKb3A%>Z~O;B^i&_V1pYv|y%A%+YHqoMFOw)bg3+ZZne7Pae3AL>v>Ly-63g^FG<%$KZJ7&`dmeS7oN{4ZrY{DU zhK^%G-A@`C=c}So>|Sy#0%KYvIk4`ey=wLg=YG6V3g)-Z`C~4-q$J}{-#SwI5wiBF zKy5nK{&MZ)iz#7@^Gas9BLdW1Zedn&TvX79>C#mu;Y>1T?l8q@MdOSz_e9@xJ0|y+ z0oXT(Ayv=_4h%;x2J)}$G-TGV@KmC5u#9Wg1KEV z7ET|ri9)YHhOt*JJ)s?zP#^SkKwAR`v^z=@TpIK982oy#)gnax>ukFHtqx$&R=_qu zZhQZF3MQX~q9eN6%s8eek+L{mqljR7Zjg*hDF2l4c#Y!~262CV%;KEcww#Cg+XL6t zaMy8)P3ePhl@Da8L;v^$b{W#5d^7T$a3)_>h&4H|;8vo@Xp1XaSp_5ubw)2%dpUhp z9U5|hQ`+X~fOTrF#LE{J*EDX}bLay^ypz#Le{PzF% fgBosu2ktny@zu=@`j4QvU`M__ewceG>Bs*8e2A^P literal 0 HcmV?d00001 diff --git a/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb b/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb old mode 100644 new mode 100755 index f63ca24..58e00b0 --- a/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb +++ b/models/We-Would-Like-In-Econ-ARK/NKCross/NKCross.ipynb @@ -19,19 +19,142 @@ "Bilbiie (2020) creates an analytical framework how to transfer the idea of the Keynesian Cross into new keynesian models with representative and heterogeneous agents (RANK, TANK and HANK). As a result, the exercise affords analytical insights into monetary, fiscal, and forward guidance multipliers." ] }, + { + "cell_type": "markdown", + "id": "d2418d70", + "metadata": {}, + "source": [ + "### New Keynesian Cross:\n", + "\n", + " \n", + "\\begin{align*}\n", + "\\text{PE curve: } C = C(Y,r) & \\text{ with } 0 < C_Y < 1; C_r <0 \\\\\n", + "\\omega & \\text{ MPC: slope of the PE}\\\\\n", + "\\Omega_D & \\text{ autonomous expenditure change: shift of the PE}\n", + "\\end{align*}\n", + "\n", + "Hence the multiplier is\n", + "$$\n", + "\\Omega = \\frac{\\Omega_D}{1-\\omega}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "59e2f621", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAALTCAYAAACSZ3qyAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAGC0SURBVHhe7d3/z21XfR94/wH3F//ID0hIljVUQxVFFj+A3MoYEVWyZKJWkSFJLUOTwSiNTCYaM60hVadOqvpGSexp49smVgfLFCeD1du4GeiA2+BGNold1QhQ4oTAmIITTEyCHGLgwl1z3s991vW62+f7c8559pfXS1p67j1f99l7n73Xe3/2XueqAgAAwKkTzgAAAHpAOAMAAOgB4QwAAKAHhDMAAIAeEM4AAAB6QDgDAADoAeEMAACgB4QzAACAHhDOAAAAekA4AwAA6AHhDAAAoAeEMwAAgB4QzgAAAHpAOAMAAOgB4QwAAKAHhDMAAIAeEM4AAAB6QDgDAADoAeEMAACgB4QzAACAHhDOAAAAekA4AwAA6IHRhrNPfuITx/8CAADov1GGsxdffLH8T9deW5544onjWwAAAPptlOHs3LlzR+Hsne94x/EtAAAA/Ta6cFarZrWpngEAAEMwunBWq2a1qZ4BAABDMKpw1q2a1aZ6BgAA9N2owlm3alab6hkAANB3owlni6pmtameAQAAfTaacPbXf/3X5Y//6I8utwSy/NZZ/X/CGwAAQF+NbkCQKuEsoQwAAGAIhDMAAIAeEM4AAAB6QDgDAADoAeEMAACgB04lnGVkxYyk+A9/6qeOQlRt+f+uApVwBgAADMnBw9lnnnnm6EehE54+cNddR/9Pqz8g/dYbbzx+5MkIZwAAwJAcNJx9+KGHjkJTWvdHofP/el8qayclnAEAAENysHB2/vz5y+ErpzS28gPRqZjV+3cRqoQzAABgSA4SzhKSavDKqYxd7f257mwXhDMAAGBIDhLO6jVmaamSdeU0xlxzluraLk5pDOEMAAAYkr2Hs/ZasrP33HN86/4JZwAAwJDsPZwlkNVwllEZD0U4AwAAhmSv4SynKNZglnYSmwYt4QwAABiSvYazhKMazOYNBLKunBq56SmRwhkAADAkvQhn9YepFw0Wkvu6v4u2inAGAAAMycHC2aIh8r/yla8c/cZZfqC6q47imOdvOoqjcAYAAAzJ3gcEaYfR71a/8mPUCWYJYF25rf4wdV4jw+ynrTuoiHAGAAAMyd7DWQJSDVlpqaDlFMca2hZVzBLE6mPqb6ClrRu4hDMAAGBI9h7OIteSJYQllNWW/8+7xqxVQ92mpzSGcAYAAAzJQcLZNnL6YgLWtj9cLZwBAABD0ttwVgcC2XSUxko4AwAAhqS34ewkpzSGcAYAAAxJL8NZPaWxHcUxA4lsEraEMwAAYEh6Gc7qKY112PwMub/od9IWEc4A+iWDQNWRd0/S8vuYVU59n/eYVW3dn2WZJ++fQa2yX8q+Ji1ne2Swq/ZU/HqgsZ1eNlcHFDMfgSnoZTjLjjM7tGyQ8+8Mqb/pRlk4A+iXBJd0sttQU1sNN93WfVxauz/IoFF5XPubmrV1X7P7vpvuW/LYdpry3tlH5XNlf1VPx8/t2f/k/3kPtpPLGtpllnkMMHa9DGfZqdWdbXZ8q4bcnycbcuEMoJ/aTnf+vUg66PVsirRlYaf7mvOuWc5tNUSl5d/rXNtcDxqmJXzN2y91w0Rae3o+62vnZQ3egi4wBb0dEOSksiEXzgD6J8Gmhpe0VaPytoFqUdjZ5DVzX/vYZfuKvHfCWH1sQtoyqa61rz3v9Mm8X17HPmq+GsyyzHNZQ9SgdpLTUQGGQDgD4KDS4W4DTDrjq9TTCRd1zjd5zXotWG2L9hU1JNTHrQpmVfuc7nS005nPxJXqPE9rTzlN+E5YU4kExk44A+Cg2vCSqtQ6ajhbFLo2ec1cu1Qfm7bourO2YrZJkKqnYc6bjvp6m77mVCQ412pZV/bpq6qsAEMnnAFwMOucfphQ062QJMgsCjObniZZr2FKW/Sa7TVmqdjkPdZVnzsvZNQQmWnY5DXhpHJQQriF/hPOADiY9rS+hJ6ues1W9/TFhJlFFZX2NdOWndLYvd5sXkDKvqN9zLqnM1Y1nC0KX4sqdX2R6c5nOEnr+2ecmlrNzcEBoN+EMwAOpj39sFsdq9cbzQttyyx7zVYCQ167PjYhYp729fL4ZWFvnrzuPjvBmZ4E0lT92unMZ990Wufpnva5TVunKrgsBLbhPJ913mPWeQ9eCWa7Wj+A/RLOADiIWhWrre2Ap6NdQ9GygNWV5y16zSod0nTmazDL30VVuG5lbZNpOYRMd/0cmbZMb26r827da/iWSTirp5Fu09adZ915nZYKaV6jXY5tWK4tjxE0lsv8qddN9m09BhYTzgA4iG5FplZA2oE30uYFrEUWvWZaOqTpxNf70vHP7csqLu31aGl9Oj0vnyfTlHDW3b/lc9XPOCTdU0gXBa76+RLUVMxWy3zc5mAHcPqEMwAOog0+tULShqe0BI9NzHvN9ra8Xjqn61RZukEhndu+qMEsrRteuxXJoVln2rMsslxVy1Zrg1kOXgDDIpwBsHerTmlsT9Vb17LXTAe1VlvSEtpW6VbhFp36eGiZjjpN8zrb7eccYpWkBom0eeGrnsrZpypmX7XBzMiMMEzCGQB71wafedWxev+2pzQuqri1p0yu6qy2ISGtD2Egne0aXPN3XnjJdOZzJsTMu7/v2uppd79dA7igsVrmVV1XzC8YLuEMgL1rTzWcV91J0JoXsNJxXzTIxarXjLaqlH8vUx+XtijsLZNglP1ONyClMpjgtM0+qQ2gq6b/pBKM8x4nadtoP2M7j2owHWI18NAEMxgP4QyAvarVj9rmVcdStep2wrMNX9TZXOc1o63KrAoP7eutcxpkV14/gbHVnc5N1Q532r4HwmjD7jZtUYheJfOtvka7jLIMsl6wXA1mafk3MGzCGQB71VZGuuGlSqe827FMxzwdznnWOaUx2nCzSTjL62+ihrBukGzDYaZlk9MOazhNO0lIyXuu6rQn+GVaT9I2OSW1lefVz1mXUf5mfq0bSKe6v8+8y3xKE8xgHIQzAPaqrcisG3rSOc/jF53Sts4pjTUw1daGh3lhsH3sJuEs4SfhKQGla5Nr3rrqPNh0erryOid5/r61ITTzsP5/3bCXx0+xwpb1KfNJMINxEc4A2Ju24522TieydjoXPb4buha9Zvs6aXWfkNvnVbHaIDUvaC2ScLisypP33aRiVrXhLP9eJJ9nUUDNNPW98555Uz9nrZYu+7xdeU5fRtY8lLpu57P3edkCmxPOANibhIba8V50SmOrDSSLqiHrvmb7Wmk1JOU58zr/3TC36pS6vFYC3b7CTzv9iypfdZrztyvTn3m4znw/bfVzpq0bjDP/67qw7umPY1B/WiHLdpvQD/SbcAbAXiSwJLjUTvei6k46mAkX7amKafMCx7qvGd1wltfPc5d1ahMM6uOXPS7TltfKa+6rcpHAUadlXgCsn687D9rQUj9HHpu2r2k9qUxj/ZzrBI58lroe5G/9fNte9zYUdbkKZjBewhkAO5POcQJO7Th3W8JM7q9t0ePSauczHdI8thveaquvmc55K0Gk+9h0apcFlLxnXqs+PtOX96+d//y7TnOqWfvuIOc96rSkpVJXq3X5f/czR0Jdbm+ns05/XytMdZ6vGx7zWWqgy/yon2/M+33BDKZBOANgZ7LdrR3lk7S2ajbv/nlt3jY/YTGd2nTgN/mR5rx/npN9SdsSIvI6hww5+QyZlhpOMw0JXMumoVbd0pHvuwSyBMlNrxur86OvgXOXajDLX2DchDMAGJl6XdKmgefQEpYTsjYNHbUqmqA6Zm0lVzCDaRDOAGBk6il/fakqJWSkGtnul3NbpnOb0/Tq6Z7zrkscizp/BDOYFuEMAEakVpX6ckpjGzJqpeskwSzqKY3bPHcI2nmWU3aB6RDOAGBEalWpntKYjv5pnv6XfXGmJy3TUUe63DaY1dfLdXhVKktj2een2lmD2Zgrg8B8whkAjEi9Rqme0piwdpqnxdVKXm0JZiepBuW5eZ0aPjNgSippY1AHR8nnE8xgmoQzABiRGs7SuU8wS2f/tE//y/tnerJfPum01HCWz5aAls83hv19DWZpghlMl3AGACNSA0uqSQkyYxtqPvv2fLZ8xlQEE2qGrg1mY/g8wPaEMwCAU5IqmWAGVMIZAMApSDBLf0UwAyrhDADgwGowy8iMYzv1FNiecAYAcEB1UJNtf04AGC/hDADgQDKIiWAGLCKcAQAcQA1m+bkDwQyYRzgDANizGsxO8wfBgf4TzgAA9iQVspzCKJgB6xDOAAD2QDADNiWcAQDsWBvMMmw+wDqEMwCAHcoPSgtmwDaEMwCAHUkwe+uNNwpmwFaEMwCAHajBLO0zzzxzfCvA+oQzAIATSp+jBrOENIBtCGcAACeQ0xfT7xDMgJMSzgAAtiSYAbsknAEAbKEGs4zMmKHzAU5KOAMA2NCHH3pIMAN2TjgDANjAuXPnBDNgL4QzAIA11WB29p57BDNg54QzAIAVEsRqMMtfgH0QzgAAlkgwyymMghmwb8IZAMACbTDLICAA+yScAQDM0QazDJsPsG/CGQBAR35QOj8sLZgBhyScAQA0BDPgtAhnAADHajBL048ADk04AwCY+cwzz1wOZglpAIcmnAEAk5fTF9N3EMyA0yScAQCTVoPZO9/xDsEMOFXCGQAwWTWYZcj8DJ0PcJqEMwBgks6dOyeYAb0inAEAkyOYAX0knAEAk1KDWf4C9IlwBgBMQipkZ++5RzADeks4AwBGL8EspzAKZkCfCWcAwKi1wez8+fPHtwL0j3AGAIzWiy++eDmYZdh8gD4TzgCAUcoPSr/1xhsFM2AwhDMAYHQEM2CIhDMAYFRqMEvLvwGGQjgDAEYjVTLBDBgq4QwAGIUEs+z/BTNgqIQzAGDwajDLyIwZoRFgiIQzAGDQPvmJT1wOZvlNM4ChEs4AgME6d+6cYAaMhnAGAAxSDWYfuOsuwQwYBeEMABicGszyF2AshDMAYDBSIcspjIIZMEbCGQAwCIIZMHbCGQDQe20wy+iMAGMknAEAvZYflK7BLL9nBjBWwhkA0FsJZm+98UbBDJgE4QwA6KUazNIEM2AKhDMAoHfaYJZ/A0yBcAYA9EqqZNmPC2bA1AhnAEBvCGbAlAlnAEAv1GCWkRkzdD7A1AhnAMCpO3/+vGAGTJ5wBgCcqnPnzglmADPCGQBwamowO3vPPYIZMHnCGQBwcAliNZjlLwDCGQBwYAlmOYVRMAO4knAGAByMYAawmHAGABxEG8wybD4AVxLOAIC9yw9Kv/Md7xDMAJYQzgCAvUowe+uNNwpmACsIZwDA3tRglma/DLCccAYA7EX2wzWYJaQBsJxwBgDsXE5fzL5YMANYn3AGAOxUDWYZAEQwA1ifcAYA7EwNZhkyP0PnA7A+4QwA2In8qLRgBrA94QwAODHBDODkhDMA4ERqMMtfwQxge8IZALCVBLGz99xzOZgBcDLCGQCwsQSznMIomAHsjnAGAGykDWYffuih41sBOCnhDABYWxvMMmw+ALsjnAEAa8kPSr/1xhsFM4A9Ec4AgJUEM4D9E84AgKVqMEvLvwHYD+EMAFgoVTLBDOAwhDMAYK4Es+xPBTOAwxDOAIBXqcEsIzMKZgCHIZwBAFf45Cc+cTmYZeh8AA5DOAMALjt37pxgBnBKhDMA4IhgBnC6hDMA4HIwy18ATodwBgATlgrZB+66SzAD6AHhDAAmKsEspzAKZgD9IJwBwAS1wSyjMwJw+oQzAJiYF1988XIwy++ZAdAPwhkATEh+UPqtN94omAH0kHAGABNRg1maYAbQP8IZAExAG8zybwD6RzgDgJFLlSz7RcEMoN+EMwAYMcEMYDiEMwAYqRrMMjJjRmgEoN+EMwAYofPnz18OZvlNMwD6TzgDgJE5d+6cYAYwQMIZAIxIDWYfuOsuwQxgYIQzABiJGszyF4DhEc4AYOBSIcspjIIZwLAJZwAwYIIZwHgIZwAwUG0wy7D5AAybcAYAA5QflH7nO94hmAGMiHAGAAOTYPbWG28UzABGRjgDgAGpwSztM888c3wrAGMgnAHAQGS/VoNZQhoA4yKcAcAA5PTF7NsEM4DxEs4AoOcEM4BpEM4AoMdqMMuQ+Rk6H4DxEs4AoKc+/NBDghnAhAhnANBD586dE8wAJkY4A4CeqcEsfwUzgOkQzgCgJxLE2mAGwLQIZwDQAwlmOYVRMAOYLuEMAE5ZG8wyCAgA0yScAcApaoNZhs0HYLqEMwA4JflB6fywtGAGQAhnAHAKBDMAuoQzADiwGszS7KsAqIQzADigzzzzzOVglpAGAJVwBgAHktMXs38SzACYRzgDgAOowSwjMwpmAMwjnAHAnrXBLEPnA8A8whkA7NG5c+cEMwDWIpwBwJ4IZgBsQjgDgD2owSx/AWAdwhkA7FAqZB+46y7BDICNCWcAsCMJZjmFUTADYBvCGQDsQBvMzp8/f3wrAKxPOAOAE3rxxRcvB7MMmw8A2xDOAOAE8oPSb73xRsEMgBMTzgBgS4IZALsknAHAFmowS8u/AeCkhDMA2FCqZIIZALsmnAHABhLMso8RzADYNeEMANZUg1lGZswIjQCwS8IZAKzhk5/4xOVglt80A4BdE84AYIVz584JZgDsnXAGAEvUYPaBu+4SzADYK+EMABaowSx/AWDfhDMA6EiFLKcwCmYAHJJwBgANwQyA0yKcAcCxNphldEYAOCThDABm8oPSNZjl98wAxuAzzzxTPvzQQ+Wd73hHOX/+/PGt9JVwBsDkJZi99cYbBTNgFBLIzt5zz9E2rW05AEW/CWcATFoNZmnp0AAMXf3R/HmNfhPOAJisNpjl3wBjkO1ZG8hSRctZAS+++OLxI+gr4QyASUpHJfsKwQwYgmynUhHLD+LnGrJVcn2ZswGGRzgDYHIEM2AI2sE8ss2qzbVj4yWcATApNZilc5Oh8wH6Iqcdpjo2bzCPbnOK4jgJZwBMRo5AZ/8gmAF9U7dPy1q2XXmciv94CWcATMK5c+cud24EM6Bv5o2wmFOvDeYxLcIZAKNXg1k6OYIZcGgJVqvCVe7PdirXl6U6ZjCPaRLOABitBLEazPIX4FDSD20H81hnG6Q6hnAGwCglmOUURsEMOIRsc1LtyvYmpyNm29O2hDRYRTgDYHQEM+AQUunK9WDrjK7oelfWIZwBMCptMEunCWBfVoWy3J+BPpyuyLqEMwBGI8NL1+s7BDNg3+rvJtaW0xlTrc/tqmRsQzgDYBQSzOp1HoIZcBKpdKXitaovmccZXZFdEs4AGLwazNJs+4FtJFy1oyumuWaVQxPOABi0dKhqMEtIA1hHO5hHrbp3mxEWOTThDIDBqtd7CGbAunK6Yh00aFnLY1JJg0MSzgAYpBrMcmRbMAPWlVMV2xDWNqMrctqEMwAGpwYzvxsEbKpuP9IM5kHfCGcADEo96i2YAVU7mEcqX8tku6E6Rl8JZwAMhmAGxLLBPLJ9gKESzgAYhBrM8lcwg+nJtaWpjiV8tWFsXlMVY6iEMwB6LUEsR8ezXU8wA6ZnnUD2gbvucroigyecAdBbCWa1UyaYwXSlYtYGsbRcX5btQq43U01nLIQzAHqpDWbnz58/vhUYm4SrVdWunNKYbUG2Cdke+PkMxko4A6B32mCWi/6B8cj3O9/rVL3qYB7r/Niz6hhTIJwB0Cs5Il47bIIZjEMqY7keLNeF5bvdbTlFERDOAOgRwQzGY5PRFRPaAOEMgJ6owSzN9SQwfMtCWb7nGYU1B2GcrgivEM4AOHXpoAlmMC45jbENZDl1MZW0DAACzCecAXCqEsyyzRbMYBjyPc2IiatCVq4zM7oibEY4A+DU1GCWDpzOG/RTTjtMEGtHV0zz24Owe8IZAKeinvKUYOaaE+iXHCxZNrpimhEWYfeEMwAOLkfcs50WzKBfEsgSutoQNq8ltOWxwG4JZwAcVA1m6dwJZtAv9fvZbTmdMfcZXRH2SzgD4GBqxy9/gf6p14GmGcwDDk84A2DvcqS9XrsimMHh5LuXwJXvXapf+fcy9fEZaRE4POEMgL1KZy9H4AUzOIxlg3nkh5+B/hLOANibNpgZPAD2pw51v2owj1TPgP4SzgDYixy9r8Fs1alUwPbWCWQJbvke5oAJ0F/CGQA7l2BWf6xWMIP9+vBDD10RxtIM5gHDJJwBsFM1mK0z+ACw2LqDc+SUxnzfcj3ZOo8H+ks4A2Bn2mDmiD1sLsEq12cmaNUqmOs1YTqEMwB2Ikfss+0VzGAz+b7kFMR6jWa3ZdRFYBqEMwBOTDCDzWwyuqKfoIDpEM4AOJEazHLU37UusJ5loSz3ZZAP/RiYHuEMgK3lVKxsbxPMDNEN6+uOsJjvUK4tU3mGaRPOANhKTrUSzOAV+R7U0xVXhaz0Ueroir4/QCWcAbCxGszSudSxZMrq6IoZtCPfidqMsAhsQzgDYCM1mBmkgKlKdSynJS67bswIi8A2hDMA1pIKWR3qWzBjitrfHlvU6uiKOV0RYFPCGQArCWawOJwZXRHYFeEMgKXaYKYawFitc+1k/dmItAS1XFfm5yOAXRLOAFgoI87V62oEM8amO5hHriVbJgEuj1knyAFsQzgDYK4Es1w/I5gxJssG83DKLnDahDMAXqUGs7RV1QTos1THcnBhncE8EtgATpNwBsAVsu2swWzVD+lC39Xq76JWB/NwEALoA+EMgMvqgAeCGWORUxXbMJZmMA+gr4QzAI7UYJZKgmBG39XBPFYNzpGKWNbphDSDeQB9J5wBcDmYZch8nVf6KgcNcgpi/WmHNIPVAGMinAFMXDq7ghl9lWpXql7zRldMyymKAGMhnAFMWL0eRzCjT1INy7q57mAeAGMhnAFMVA1m+SuY0SeLqmRpOZCQa81cFwmMkXAGMDEJYvU3nxLMoG/qqba1ZX1NNc3oisDYCWcAE5JgVgdTEMw4pPbHoFdVvbL/zvppdEVgaoQzgIlog5nrdDiEhLDz589fXu9qy2mJALyacAYwAW0wM/Q4+5L1bJ3BPD5w113HzwCgJZwBjFyqF7WjLJixLwlcbQCb1+roivbPAPMJZwAjJphxKN1TF2tLaDO6IsB6hDOAkarBLM32kJNYZ5TEXFuWfW/WN4N5AGxHOAMYoXSMazBTsWAbWW9yCmKtiK3apyaIWdcATkY4AxiZnL5YKxg6y6xr1WAeRvgE2D/hDGBEajBLtUMwY5WsI7kebNH1Ym3L75MBsF/CGcBIpJOdbV862q71YR1t+JrXDOYBcFjCGcAI5FS0bPcEMzbRHf7eYB4Ap0s4Axg4wYyuVLoyeuKq9aGe0pjHqo4BnD7hDGDAajDLX6Yt1a6sB/mh56wTabkNgOEQzgAGKBWRekqaYDZNWQcyAEwG6qhhrNuMsAgwLMIZwMCkU15H1xPMpiXLft3RFfOYhDcAhkM4AxiQNpjlOiGmpw1gbctgHqmiJZBlPQFgeIQzgIF48cUXLwczFZHpak9jzPVlqZ66tgxgHIQzgAHISHqpjAhm41RHV8x1hKuqXln+uZbM6IoA4yOcAfRcDWZpgtk4JIDV0RVr6K5NFQxguoQzgB5rg5lKybBl+WUwj+4PP3ebQV4Apks4A+ipVMkEs+HLtYLtb48tarmeMOHNsgaYLuEMoIcSzLIdE8zGYV44y7JNlSzL2uiKAIRwBtAzNZilkpKqC/22TnjOAB5Zpglp+bf9EwDzCGcAPZIR+2owU03pp3mDeawK0XmOoA3AKsIZQE+ksy+Y9dOqwTxyHwCclHAG0AM1mK3zO1ccRqpjOQVxncE8jLAIwC4IZwCnrAYzHfz+yCmIbfjqtpzOePaee46uD3S6IhCpoPudwv3JwbIpHLwUzgBOSXYyOYUx2yvBrH/qsqnNYB7APNmW52CN0XX3J/M48zdnl4ydcAZwCgSz05H5Xk9XXCVHwdPhyl/VMWCehLEcuHGt8P7VAbPGfo2vcAZwYG0wM5DE/mV+5/TDBK3M89oc4QZOov7sSbYt6wSz9Esd6Nle5nGqZ2ljDsLCGcABJRDUYJYdO/uRDlCCb/fUxLatUz2DrnqN6LotVZWcipX1bVHHvHvgYJuWDiuHk+WZ+b7umQ91vck2ie3V+TjmA5vCGcCBJJilA5Xtk2C2ezmSmg7TOqMrpjPswn22ke9uTq+aF9LqepX+R/7mcd2fX5j33c/j0rohLetyva/buut5nsthbBq0uuuK6tn2arUy6/9YCWcAB1CDWZpQsD9tB6htme/pIJn37FIbkJYNVNBWcLMuLjolK+tnfVzasn5MXqN9XQd8DqMGrSz7dU6tq4/P+lGXl9PZt5fvRF3nxxpyhTOAPcu2qAYz1zntV1t5SEcolTTznH3IelXXtbRlwb/tUKYt6p+0FZZ1KgNtmOt2VGslOd8DYWA3Mh/r/F6nj1mXZ53/9SDdmKs++9Z+l9ZZBkMknAHsUT0FQzDbXjqg9XTFVUeqM7/TEXLaEPtWrzmq3+9l2g5l2qL+SV6nPianLq6S70MemwDWtWnQY7l2GWbZr5L5n+XS3e7XfYL9wXba5TDWgw7CGcCeCGbbSbDKvEsVrO2spjktkb5I4KnrZTriy7QVl7R5/ZPuKY3zDjDkee0BihrO5oWF9ruzavpYLvO5Lu/M11UHiXL/sj5odzmyvvZ7ss4BjCESzgD2oAazHDm1E14t4bWeglV3vPPaOkesYd+yvrbr5aqDBu16nc79PN1TcrvSp8l9bWirt83r7yQQJlDkO2MbdDKZh3XZjLVaMxQJZGNfFsIZwI7VHblgtlo6mt3q2LyWjmsCr9MV6YO2s74obFU1QNU272h/thPtY+Z1OuuAEq2ExGUDkexKvnf5HLXtSkJtpv8k7STbhPYzLXqd3F6XyzpVs77IdHen9VBncLTztZ2G/Dvrdr4DuW8bWeZ1eWz7Gn0nnAHsUL3OQzBb37xwVo/4O42RPlr3lMZsA9qq2aLtQq2019YNCnW7cuhKQaarnf7a8vl30dFvq4XbtEzHpjJvMz/nbXfmLcs679MWnUbXrg/dVpdldxnXlnlwUt1TYmvLupaW6a6fN9O6j/5xna/daUirB9faeZ6QtY32dbvfk7EQzgB2pO6YsiMSzC5ZZztcO2jZWafzOdYdLuPQPaVxUUiZF8wWPbYNKXlcle9Ce9+hvht5n1qhyPTUgyTt9OTgyUklNJykbXrwpg0Imf46P9tw087jLMN6e/e+VltJTct7ZPra7V/+3YaXPCbP20XIzWvn/dqqUt0PZfnlvdp1MY/dpTZ4Zhry/24orO9b1595QXiVdjltE8yHQjgDOKHshOpOd5sdzpik85Id8yYdytyfeQhD0HbE53UQ09nudkqzXVi0juf2+rhlrQ1t+5Tpr9Oe9+xOd+3kb1v5OC1tMMo2qpX+Yr2vDXw5WFRvXzX/l71+VZd11ptV28VttJ8j055prsuwLrd63660wWxe6Gu/L1m3Mi15/+56tY52Hud1x0o4AziBdqc31WCWbW12lO3Ov22LOiowRG3oWtbSAc/3YlUnvO3cpqWDm5bntu+1yw71IpnW+p6Z/m4Huu1o53FDkfm5aD7mMy6az+1BplXzv32PeSElcnveaxfVsnkyjXUaMu01mEW9fd5y3VbWl/Z152nXmZP2y9vltK952AfCGcCW2mCWHdBU5HOnQ5kw2u4sFzXhjLFoT6uq63b6Gt22SVWkDQDZnrTyWvW+fVRautrT4vLeXe20zru/j9p5uKjaV+/vzv92+7Zq/rfrxrz9QcJE7tvn9rDujzLdae00530T3na5HrWBdNHnSmirjznJe+f16+sMrWq7KeEMYAttMNvnzraPaidjUasVg/b0IBiD9rSqRZWCTWQ70n535lVncns3NET6OLvsaK/T+a0HZnb5vvu2KnBGbu9ur/IZ6/PWWdbLQmDmW8LSPs+uaKc37RD7pTaczVsn2nmyqJq4rjbkLVqOYyGcAWwo4aTuKKYWzKp2R5mWzsiuj8pC37SVlF1Uy9tAlJZOfKuGt+52pnZ6u6d25TuY7+I2IaAebErbd/8p05fp3LatO+/bcDAv4C7TPjcVw1XaoN19r0xzbusu311qT2nM+x1C3qe+57x1t+4n8vckn72tSq6zLIZOOAPYQDpDtYM2tmCWYJXPtE7HLkdB87jsNPfZ4YC+aDuIad1gtI32NMF5nc76nt3vWDr63QDQDXqbHChpq+HpSO9Tt8KzTVs3nGUbVZ+z6fa6DWfrVn3q49OqPLd7iuE+ZH2o732o/m+73mT9zWfMupqgWINZpuuk35X6WoeYj30gnAGsqQaztLFsX/KZsiNtd+xpU9gBwibajv4uAkw3pKwbHmqFJH9bbRVj00pFW3U5SUUw28VV28Z87gSWk7R1t0/1QFraptu0fI763LznOtrtaNTX6J4yuUget82+pV2XtqmaZd3bdP5EprW776gt6+C663Tee9FjM+/ra647H4dOOANYQ3YKNZid9Cjgacu2MR2wejRyXut2/GDq2o7+Lk5pbANR2jphqq1UdB+fzm2mMRWMTbdR61aYVk1jgkGfOtD1M6Uts+hz1eeuG87agFz3Ges+N9OQx28Tktp1ad1AVOX98r6bqlXffBfyGWvL/mWb9W/ePqdd39edj2MgnAGskJ1dtinZgQ01mGUHnB1gPkPd2c1rCWzZ2Q71c8I+pKPdfk+26UB3tRWHeac0duU7Wb+/+S7vUjdUzJPwkGleNK3pXG/Tyd+n+pmWVTrrsp23zasHsNYNBtl21vfMvNikipXnZv52ZbpWrW/turQqQHdlGuetT3nfRa+V+ZH32sVBvPTV81rdz1jXt9y36/W974QzgCVqMMtOesiBJTu+fI55LTvA7GyH/Plgn9I5bL8vJ9X9Pq6qdtTgUx+/6+pU7WynzasKpqOcUJZp6HbY8//6/L51outnSpsXcNJPzGea95mjhq11P1c7H+fNq3na+deGndxew0lea9Eyb9eldUJ+lefV6lf72rm9htK877z5Vt8v8yXPzXzstnX2J1nv8x7zvlN12qYWzEI4A1igBrPsONbZyfZd3eGmZceXjsC8HS9MXb4XtZOZ70n93qTle9R2SNfdNqSzmsfnubXTXVs65/X12pb3br+3afn/ruXztu/RhsU6velEdzvcmcbc3k5bKjFpfTjY0w3VdXuXv+sEynyG+rnWkXlV32+TcFKfk2ms8++3f/u3L9+elumt6vrZXZeyXa/rTv2s87QhMq2+Z+ZFDUW15bW62mle1jLf5s2HTFu7XrfrTT5TXW5TDGYhnAHMUXcO2fH1NZhlB5ede3ammc5V8tjs+MYQNGGf2g7vqrbu96ntjJ6ktZ30XaoHo+a1dJrndfZzWw0k6bDXYNCX/leWTaa9+3nq9K4zL+vz1/lMdV60FbBlElxq+M86186/boBqX7Pun5a1TMsied9aFWwDXW7vzq/c3pXXXnd9zut3ZbnkdWvIy+vVafg/77vv6Lb2AMHUCGcAHX0OZtl5Zqc9r/M47wglsLnaUVzVNvnOzXv+Nm2f26SErYSAbGNqW/UZa6jrc5Ujnf/2M2Wa152PmSf5fAkty+T1sl3edD7UkNQNdHm93Fa39W04zjKZt260bZVaIes+tr5vwldaVx6f5yZY5W8e275v5nV97WXzLZ8h9+fzRZ1/ed2p78uEM4BGDWZ96Whkh5WORKanHmVc1Lo7d4B9qx3xZZWaocu2NZ9xWWhIsEjLNnsTtQK1qDK5boVvE5nGvOe88BXpP+f+bj+6ra6uqmzVULlo2ttQms+Zacm6tOn8GyPhDGAmO4TayehLMKs7yGUtO7RM75g7RkA/rerkj0lCRkJEQkX2FW2YqgfP5gWsZbrVo1buq9v3XashK5+lK/udfJZu+Mpnq/udVQcCs17kNdIWha18trxWXjef1cHFVwhnwORl51GP8vUlmEXt+HRbpjUdhamf+gGcrnmd/DH3vWq1Jy2fM9voBLWEkG22x231qKpBJa85LzztQr2urE5zPkf+nf3KvGAWbThbtozzuOyjls2T3J7XybyrctuiIDc1whkwaW0w2/WpI8vUo4Wr1B1//maHaecF9EW2S9l21m1Z+l1jrqK1g2UkOOWzZv+xzrZ8nrZ6FAllt/79v390+776sDVktcspByX/wbvfvfKz1OnN47I/yjTWlrM38jq5P/Np2evUUFpDYKYp+zn7t0uEM2Cy6hG+diexT9lZJQDW98zOaJW60wbom2zH0iId63Tex37tWQ0o+XuSA3o1JNUBM2pAefqpp/YaUtI3zvvWqlX+n/f9whe+cPT/ZbIPqwcM67KvLfu1hLN1+t415NbH5v+HPDjad8IZMEnZydQdzL6CWXawee3ssObtzNJcKwYMVd2OpcOesNKn08KHIPMu+4a6jzjEQcIazuryyvseur9cw1ldb2pA5RLhDJicfQazHP3M0dW681nWDrUzBtiHHFxKBztVD1X+zWX7n/mXfcahTumrBw3zvvl7qPdtZR+cYJiWf3Ml4QyYlBrM0vaxU0hnpRvC2pZTP9KRsUMCALqEM2AycpRwn8GsyuvXMJZ/1yOUjiwDAMsIZ8AkJBzVsLRNMKunKyZorZLKWEajsg0CADYhnAGjV4NZTincJJjlsXW45Dy/NhUwAGAfhDNg1FLtqsFs1YXPub/+Vkt7amK35TUBAHZNOANGKyEr24JVwSyVsJyu2AaweS2vk0qayhkAsA/CGTBKNZhlSPtVFbOErTaEta0OcyyQAQD7JpwBo1ODWf6uq15XltMZ87zT+v0XAGC6hDNgNBKm6o8//9Iv/dJRxSv/T/BaJWEs15sBAJwW4QwYhQSzH/vRHz367v/tv/W3jv62zWmJAEDfCWfAYCVwpeL1Cz//868KY91mhEUAoO+EM2CQcgpiN4B1Wx1dcZsfnQYAODThDBikeSMsZjCPjK6YaprTGAGAoRHOgN5JsFo1OEeqYX/zDW8o//Pf+Bvln/7Tf1p+//d+7/geAIBhEs6AXkjYyimI7ZD2i+SxuT+tnrJ4/vz5yxW0tJzSmJEac62Z0xoBgCEQzoBTkdEVUx3Lb4olZLXBqrZ5oSqnLOa+NphFqm35zteWxyWwJaTl8QAAfSecAQdTR1fMdWE1gC1qCVXdUxsXBbNV8hwAgL4TzoCDqeFqXkvgWjaYR31uQluqbpvI8wAA+k44Aw4moaqGsbRcX5brzFYN/lGvJ9smmEWeCwDQd8IZcGKpdGXgjYSoVRLG8th51bF5ck3aSYJZCGcAwBAIZ8BW8v1qR1dMy6mJu1SDWU533DaYhXAGAAyBcAaspR3MY9Hoimm7+N4liNVglr8nldcBAOg74QxYKt+jOhz9srZsMI9NJJjV99tFMIu8FgBA3wlnwFIZrKMGsLalepbwlPtPcsphax/BLPJ6AAB9J5wBSyUw1UBWR1fc5DfG1tUGs1Tgdkk4AwCGQDiDCUq1qw7mkUC0Sh5/0tMVl0nYqwOL7DqYhXAGAAyBcAYTsGowj30Gr1USzOo07SOYRV4bAKDvhDMYqYSeVMfWGcwjvzt2GmowS1v1Q9Qnkc8IANB3whmMUH4Mug1f89oH7rrrKJTt4/qxdeT7WYPZvqchnxcAoO+EMxihhJ02iKUlBO16dMVt5fTFOk2HCId5LwCAvhPOYGASrtY5BbAO9pEq2mlVx+apwSzTd6jpEs4AoH/aa+L12y8RzqDnUuXKhitVr1SaarAZohrMEhoPWb0TzgCgH9I/n3dNfG5DOINeypGkXA+WI0nthqttfaqGrSPhMtN96GAWeV8A4PBWjRhd21APPO+acAY9kbC17uiKGcxjSOv3aQazyHsDAIexqDo2ryWU1WviEc6gN1Ip626wauvTYB6bqsEsf09r2vP+AMB+rFsdq+20R4zuM+EMeiIbtnbDlaNNfRvMYxMJYvW0zASz05RpAAB2Z9vq2NAOMh+acAZ7lnCVkLXOha55TI48DX3DlemvG+vTDmaR6QAAtqc6dhjCGexYgkmODCWUtBuv/HsK2mC2TiA9hEwLALCZTatjeazq2MkIZ7ADOSqUo0M5StTdWLVt7OtkG8xydK0vMj0AwHKbVsfyuPR/8jx2QziDE8jRoRwp6m6s2paN2xTOs05ArRvyPgWzyDQBAK+2bXWM/RDO4ASycepuuNLqxmsq62Cfg1lkugAA1bG+E85giVWVrtxfN1454jTFC19rMEvr62fP8gGAqVIdGw7hDBoJW9kY1cE8crRolaxnYz5dcZnMq74Hs8j2AACmQnVsuIQzJi+hYtlgHsyXjX7mT9+DWViOAIyd6tg4CGdMUjZG2SitGswjre/B4zTUYJYdwBDmT6YVAMZEdWychDMmJz8I3d1gtS0buJzWmA3eVE9XXCYb9synBLOhzJ9MLwAMXT24rDo2XsIZk5P1orsBy0YuoU2VbLmE1jq/hhRcM80AMDSpcuWgaKpebb9lUVMdGz7hjNGog3mss9xzNCkbsFTHbMDWM9RgFpluABiCTS69UB0bH+GMQWvPt64bqoQHdqsGs/wdokw7APSR6hgt4YzByamHOQVx2fnWrhXbjczHOorlUINZZPoBoC9Ux1hEOGMQsizX2YjVwTwcTTq5BLMagIcczCKfAQBOi+oY6xLOGIRlIywmQBjMY7faYJadw9DlcwDAIamOsQ3hjEFI8KobsFTHckTJYB77kXlag1nm8RjkswDAPqmOsQvCGacm1ZkcIcopc+tUZ1Ids0z3KyG4/pDlWIJZ5PMAwK5tUh3Lgc88Vl+GZYQzDmrRUaVssDhdNZiljSmYRdYxADipTapjzvRhG8IZe7fuUSUbrtPTBrMxXruX9QsAtqE6xiEJZ+xNNk7p7Hc3XG2rG7ExBoKhyBG9LIuxBrPI5wOAdaiOcZqEM/YmG7buRiwtv5uV+2zETt8UglnkMwLAIqpj9IVwxlYymMeqcJXOfpZDe1Qpz6MfajDLTmbsQTmfEwAq1TH6SjhjbXVDlspX5u86P0xsGfRT/d24BLMpBOZ8VgCmTXWMIRDOWGrZhixHkhiehOosv6kEs8jnBWBacgaP6hhDI5xxhWyQsmFaZ0OWZiCPYanBLNXPKZ1ims8MwLhlv5aDytnXqY4xVMIZV1gVyrKxy4YsGz+GpQazdU5HHZt8bgDGp1bH6iUXy5rqGEMgnHGFOkhE24yuOGw5kpijg1mWUwxmkc8OwPCpjjF2wtlE1ME8Vs2TbPSysctGLxu/KZ36NkaC2SX5/AAMk+oYUyKcjVg2ZjlaVDvnadlgMQ1tMMtOasoyDwAYBtUxpkw4G5m6McuRo+7GqzbVsPFLMBfMXpH5AEB/qY7BJcLZCCSQrRrII60O5mFDNm7ZwdVwLphdknkBQH+ojsF8wtkIZMPW3YjVZjCPaanBLC07PS7JdwGA07VpdSz9G9UxpkY4G4F0wuvGzGAe05X1vQaz7AB5Rb4bABzWNtWx8+fP24cxacJZT+UoUY4W5XTFHGVaxcZs2rKuZJ0XzObLvAFg/7atjjmgDJcIZz2SDVpCVh3Iobb8HxYRzFbL/AFg91THYLeEs1OUDVo61tmgpWPd3YC1zfnWzFODWXZ2jjoulnkEwG6ojsH+CGenJCMOdTdg3ZYOt8E8WKSuQ4LZaplPAGxHdQwORzg7JQld3Y1ZWv3dDp1tlskOMuuLYLaezCsA1qc6BqdDONuDVLpWVbuy0cs0tqMrwjpqMMtfO8H1ZH4BsJjqGPSDcLYj2Ti1g3nklLNVbNDYRHacbTBjfZlnAFyp23dZ1lTH4DCEsy1lw5QNVDZU8wbzyFEn2JWsb3XnKZhtLvNtX+q2IKckzzvanOWWZaY6Dpy2VX2XblMdg8MTzjaQjdO6518LZ+xKG8zWqcjyapl3+5DtQdvBqSEs2560dILa7UWW4yEr+gCqYzAswtkGcmS8uyFrWzph6aw5wsSutMEsO0u2k/m3a+nA1O9+ltGy60wT2NoQZ1kC+6I6BsMmnG2gO8JiPcKUjpcjTOxadpR1x6ozfzKZh7vU/hRGltE6P3eR7UR9TpoKGrArqmMwHsLZTN2orbomJB0wR5g4BMFstzIfdyXbgdrJScv2YF3tKY5OfQa2pToG4zXZcJYglo1aewF//g+nrQazNNWV3cj3e1eynajbjLR1qmZVt3omeAPrqgeSVcdg3CYTzupRplw3tugokyPZnLZ03mswc4Rzd/L93pV2+5FO0iayHarPTcv2CGCeTatjqcyrjsHwjT6cZcO2zuiKdTAPOC1ZV7MuCma7l/m6C1ku3e3GptrnZ1lX6VQtatmWOfoN47dJdSwHlBPcclDP9gHGY/ThbNEIi+kU2ajRFzWYZWcrmO1e5u0uZJvSbkdOGs7SqnTI2oFGsu2q4axux9Jhs37AeGxTHTMqNIzbJCpndaPmglj6qK6jWT8dKNiPzN9d2Gc4q+rtea9Wfe904KwnMFyqY8Ayow9n9aiUjRp9lJ1u1lXBbL8yj3chy6h2mtJOGs6y3Lvqfd1wFnV9yV9gGGo/RHUMWMdkBgSBvhHMDifzeVfaEV43fd1a/aotpzF21fvmbb/a51tnoL9Ux4BtCWdwClRADivzelednu6P0adDta72mrK0eUfG632Ltl/1/k3eF9gv1TFgV4QzOKDswOvgDoLZ4dTOUjpEme91oI20TUNOlmFbPVv31MY8r+20LRpGv96/Kpxl2oHTozoG7INwBgeSHXLdiQtmh5X53XaUEpISqtIWhaRl0ilrg9Y6P8NRQ3naslNZ62OEM+iX/OC86hiwb8IZHEAbzHSqDy/zPZ2qk24T2sGF0uHqVtDSeevKe7ZH1vO49jW601QftyqcOa0R9i/fw5yOrDoGHIpwBnuWDnvdsadzz+Fl3u9CglV3Geb/bcetlW1QvT2Vs+42KR25blivj5+3/cq6VO+fFwSBk6nVsXxfVceA0yCcwR61p78JZqcn838X0hHLa+UIef7dtrqcWzWcLXv8JuGsDkaS5wO7ke+a6hjQF8IZ7Ilg1h9ZBruQUFQ7aYtaewQ9wWveY9q2bjir61OaqhlsT3UM6DPhDPag7UjboZ++bA92YZ1w1m53NglneV46jPX2HMnPbekU1vfNX9s12Fy+N6pjwBAIZ7Bj6WALZv2S7cEuZNkmTC1rbVUr26B5j2lb3U7Nu69tqq+wPtUxYKiEM9ihWvkQzPolywQYN9UxYAyEM9iRGszSMXBNUL9kuQDjsml1LI9Ldcz2Gegz4Qx2oI6il2DmKGz/ZNkAw7dpdSyP9ZuAwJAIZ3BCOTUm65tg1l9ZPsDwqI4BUyOcwQnUYJaLyQWz/soyAoZBdQyYMuEMtlSDWf7Sb1lOQD+pjgG8QjiDDaVCVo/oCmbDkGUF9IfqGMB8whlsQDAbpiwv4PSojgGsRziDNbXBLJ0GhiPLDDgs1TGAzQlnsIb8oHTtYOToL8OS5QbsV6pcOXCVqlcNXcua6hjAqwlnsEKCWT0NRzAbpiw7YPdS6UrFK5WvGroWNdUxgNWEM1iiBrM0wWy4sj0ATk51DGC/hDNYoA1m+TfDle0BsB3VMYDDEc5gjlTJsg4JZuOQZQmsR3UM4PQIZ9AhmI1PliewmOoYQD8IZ9CowSwjM2bofMYhyxR4heoYQD8JZ3AsR4Kz3ghm45PlClO3SXUs28E81n4U4LCEM5g5d+7c5Q6JYDY+WbYwNZtUx3Iadx6XswdUxwBOj3DG5NVglo6JYDZOWb4wBapjAMMmnDFZCWI1mOUv45VlDGOkOgYwLsIZk5RglqPGWU8Es/HLcoaxUB0DGC/hjMkRzKYnyxqGSnUMYDqEMyalDWbpvDANWd4wJKpjANMknDEZ+UHp2tERzKYlyxz6THUMgBDOmIQEs3Rosl4IZtOT5Q59kip+qmM5tVp1DIBKOGP0ajBLs05MU7YHcNqyLUp17AN33XVF8JrXVMcApkk4Y9SyDtRglo4R05TtARya6hgAmxLOGK0ccc56IJiR9QAOQXUMgJMQzhilGsxytFowI+sC7IPqGAC7JJwxOjWYpROUjhNkfYBdUR0DYF+EM0YlR6+z7AUzWlknYFuqYwAcinDGaAhmLJL1AjaxaXUs2x/VMQBOSjhjFGowy1/BjK6sG7DMNtWx8+fPu6YVgJ0Szhi0dKhyPUeWdzpVME/WD+jatjrmABAA+yKcMVjpIOXodZa1YMYyWUdAdQyAvhPOGKQ2mKXzBMtkPWGaVMcAGBLhjMFpg1k6UbBK1hWmQXUMgCETzhiUdKBydDvLVzBjXVlfGC/VMQDGQjhjMAQztpV1hvFQHQNgrIQzBqEGszQdLDaV7QHDlu99ApbqGABjJpzRe+lgCWacRLYHDEtCVb77CVn57rfha15THQNgDIQzei2dsyxLwYyTyDpE/9XqWB3wZ1lTHQNgjIQzeqsGs3TUBDNOIusR/aM6BgBXEs7opYy8VjtjjopzUlmX6AfVMQBYTDijd9IZy/ITzNiVrE+cDtUxAFifcEavCGbsQ9YpDkd1DAC2I5zRGzWY5S/sUtYr9kd1DAB2Qzjj1KVjV3+7SDBjH7JusVubVMfyQ9H5bueHo1XHAGAx4YxTlY5a7dwJZuxL1i9OZtPqWA64ZGAf1TEAWJ9wxqlpg1k6cbAvWcfYnOoYAByWcMapePHFFy93+HI0HvYp6xmrqY4BwOkSzji4dORqx08w4xCyrjGf6hgA9IdwxkHVYJYmmHEo2R5wieoYAPSXcMbBtMFMR49DyvZgylTHAGAYhDMOIkfqs0wEM05D1r0pyTWdqmMAMDzCGXsnmHHasv6NXbZ3H37oIdUxABgw4Yy9qsEsHcYczYfTkHVwbGp17Ow996iOAcBICGfsTa5xyXJIMHN0ntOU9XAMVMcAYNyEM/YincIsA8GMPsi6OESqYwAwLcIZO1eDWTqUghl9kPVxKFTHAGC6hDN2qgaz/IW+yDrZV6pjAEAlnLETOWpfj/QLZvRN1ss+UR0DAOYRzjgxwYy+y7p5mjatjuVxqmMAMD3CGSfSBrN0PqGPsn4e2qbVsTw21TEAYLqEM7aWo/rpVGZeC2b0WdbRfdu2OpbnAQCEcMZWEsxqB1Qwo++ynu6D6hgAsEvCGRurwSxNR5MhyPZgF1THAIB9Es7YSOZpDWYGK2Aosj3YluoYAHAowhlrS8Ug81UwYyhSsUrlKuvtulTHAIDTIpyxFsGMvss6mh9o7la4ss6mmrWM6hgA0AfCGSvVYJaOqx/Bpa/yfT9//vxRyzqb/y9aX2tFLVWvNngtaqpjAMAhCGcslQpB5qVgxtCl0pX1uf78w7KmOgYAnAbhjIXOnTt3NB8FM4ZIdQwAGBrhjLlqMMtfwYyhUB0DAIZMOOMKCWK10pBgBn2mOgYAjIlwxmUJZnW0OsGMvlIdAwDGSjjjSBvM0pmFvlAdAwCmQjjjimCWIcjhtG1SHcu6m8f+x0cfvTyUfsKZ3+MDAIZGOJu4dGDzI72ZX4IZp2WT6ljW1zwu62tbHUugy49Qtz9EnX8DAAyFcDZhghmnaZvq2Cbf6bx+ngsAMBTC2UTVYJZmPnEIu6iObSLrdV4LAGAohLMJSkWhBjPX5bBP+66OLSOcAQBDI5xNTCoRmTeCGftw6OrYMsIZADA0wtmE1GCWCoVgxq6cZnVsGeEMABga4Wwi2mCWofNhW32qji0jnAEAQyOcTcC5c+eO5odgxjayzvS1OraMcAYADI1wNnKCGdvIaa+pjuV3wmroWtROszq2jHAGAAyNcDZiNZjlLyxTq2NZV4ZUHVtGOAMAhkY4G6F0tGvFQzBjkTFUx5YRzgCAoRHORibBLFWNfH7BjNYYq2PLCGcAwNAIZyPSBrPz588f38qUjb06toxwBgAMjXA2EulM12CWzjXTNLXq2DLCGQAwNMLZCKQ6kqpHPrNgNj1Tro4tI5wBAEMjnA2cYDY921THcppr1pUpEc4AgKERzgasBrO0qXW8p2bT6liCW8J6gtxUCWcAwNAIZwOVjrdgNl6qYycnnAEAQyOcDVCCWT6fYDYuqmO7JZwBAEMjnA1MDWaplIx9QIexUx3bL+EMABga4WxA0jGvnXTVkmFSHTsc4QwAGBrhbCDSSc9nEsyGRXXs9AhnAMDQCGcDUINZqi2CWf+pjvWDcAYADI1w1nM1mOUv/ZRQlXCVZZSwVYPXoqY6dhjCGQAwNMJZT6XDn058Podg1j8JVglYdRkta6pjp0M4AwCGRjjrIcGsf1THhkc4AwCGRjjrmTaY5bolTo/q2LCdVjir602uOewG+dyW9SSDxAAAdAlnPZJOXQ0C6eRzWKpj43LocJbfHWwHganrR6YjLQdbzt5zz+X7M3qnkAYAtISznkgHvwYCwexwVMfG65DhrP3+pi2rercHYdKyTgEAhHDWA7Vjl+ZI+n6pjk3HocLZJsGsSpWtfc6HH3ro+B4AYMqEs1PWBjMBYD8yX9etjuVUs3pNkOrYsB0qnLWnMmb9WVcOEtTnpfn+AwDC2SmqnTPBbLc2rY6lc51qh2UwLocIZ/U9attkEJ+sp+1znd4IAAhnp0Qw2y3VMboOEc6yHrXr1qbf5bbqlgYATJtwdgpqMEuQEA62ozrGKjWcZT3Jv3Od1651DwZsqhvu6jYr05p/d9s+PgMA0B/C2YHlwv9Mm2C2uV1Wx7JutI/NEOfC27gkyLTrRG1ZL3al+9qbyvrcPr9us/I324p64CF/8/8+btMAgN0Rzg6oHiUXzNazz+pYW5nIe6TjW0NfwlpuY9iybLM8s07UZZ22y+9eu/6lbWpROKvqwZw8DgAYP+HsQGowS4VGMFtsl9WxbSS01YpFXr9P6xCbybLLerJP3WvGNl0Pu8/vHlio4U04A4BpEM72LJ21Gszylytl/vTx2rFMV61a5C/Dc4hwVteR2jbd5uQAQH1u1v8u4QwApkU426N08GsFSDB7RZZLOrWnVR3bRKY1nWanog7PIcJZ97q2Tb7nOcDQPnfeQQDhDACmRTjbkzaYTb3ykg5sqmM5pbNP1bF1ZfqzLAW0YTlEOIus13Xdzfq97jqSILfqecIZAEyLcLYHbTCb6sASmfdDqY6toy7TNIbhUOGs/b6nJaytku1CfXzaou2EcAYA0yKc7ViqPfU6kikFs6FXx9aRTniW7dQroUOx73CW16/rb9aNdnCPhLV52588rgautHxXclCi6oYw4QwApkU426F01GowmUIwy/wdU3VsHbXDf+h1i83VZbUvCUwJZK1879uQ1l1P6oGb/M3z2+9CntudXuEMAKZFONuRGszSxtpxn0J1bB01kNJvhwhnef0ErazrbashrHuQJrflu9N9fHuAoyWcAcC0CGc7kGpQDWZjCyKZh1Orjq2Sz5ZlPYXq6JAdKpwta91QNe8x3dYSzgBgWoSzE6qnIo0lmKmOrSed5Xz2Xcj8XlQ5yXvktiyLBN8xh95d61s4q9OzqkW+h3l8Xf75Pub/uR0AGC/h7ARqMEvFaMjhJPNpk+pYHtsOYjBF6SRnfpxkHUvQasNXOvLd18t6ldvraXJjOQhwCJmXmWf7ku9/lt+ylu9KleU27zHdFoteO7cDAOMlnG2pBrMEmqFVMzatjuVxqY45an+ldJZTzdpWOu51Hq8KXPVUyjw2f1XQVtt3OAMA2DXhbAvpkOf1hxTMMi9Ux3arVrS2kTBW5/e6Aa+GjU2eM2XCGQAwNMLZhoYSzFTH9u8knf+2arZJCG5Pb2Q54QwAGBrhbAM1mOVvH4NZPq/q2OHU6862CbQ5JbIui02uIWuft4+DD2MinAEAQyOcrSFBLJWlvGafTidTHTt9ma/brGftcunKMs0pk+1If1VbcRPOlhPOAIChEc5WSDCrlag+BLN8JtWx/kgo3nU4a6tjXQls9b554Y1XCGcAwNAIZ0u0wey0OsKpcqXapTrWTwnAhwxnbeUsFTYWE84AgKERzhZog9mhO8GpdKUTXgd/WNZUx05XlsE261m7bLtBelk4c83Z+oQzAGBohLM5MkBDrVIdIpi11bHa8V7WVMf6IQE+y2Ob5dAu6+56uiyAtaezWv7LCWcAwNAIZx2HCmaqY8N3ks5/1q26fLNsW+060a7DCWP19jyG5YQzAGBohLNGDWZpmwxvvg7VsfHJ8kklaxuputUQlvUt/48E8O56UCXE1dsF9dWEMwBgaISzY6lk7DqYqY6NW4JTt+q1ibZKm+XfBvesj/UUxtxXf2Mv7STvOSXCGQAwNMLZTD3F7KTBTHVsOuophicN06mYJWzlOrO0hLC6Dua+jBJa78v6smk1eMqEMwBgaCYfzmowS5Vim2CmOjZNCU1ZnvSXcAYADM2kw1mqVnlcglm95meVTapjqcTlcQmAqmPjkXUlyzbLlf4SzgCAoZlsOKvX8KwTzDapjuX18th1qnYMk6rZMAhnAMDQTDKc1WCW63jmBTPVMRbJMs4yd2pq/wlnAMDQTC6c1WCWvy3VMVZJkM+yTxin/4QzAGBoJhPO0rFOpSy3J5ipjrGJGszWOQ2WfhDOAIChmUQ4qx3r3Pa//ORPqo6xsQT7hPRd/QYe+yecAQBDM/pw9jv/5b+Ut77lLVcEr3lNdYxlctqrYDYswhkATEv68EPvx486nP3u7/5u+eGbb74ihLVNdQzGIwdW6g9211OYjaoJANNRD8zWS5iGaNTh7G9df/3lIJamOgbjVcNZfuogzUEXAJiWGs5qG2JIG3U4+5tveEP5B+9+d/nRd77zqErWHlUfaqsdT03TtKm07Gw1TdOm1NhO5l0bzmobUkgbbTh797veVX7pl35p7o5e0/rWstGYF8Y1TdPG2OZ1njRN0/bdhhB8RxvOAACA6VA5AwAA6IFuOHPNGQAAwCmo4WyIoawSzgAAgMFLIBtqKKuEMwAAgB6YZDj767/+68uj5AHDliNk+f3Cr3zlK8e3AAAM0+TCWX6o9p3veMfRD1J/5plnjm8FhirhLL9jmHPMP/zQQ0cHXwAAhmgy4SwXCNbfVslFgjpwMC458JKDLmmf/MQnjm8FABiO0YezhLCEsYSyhDOnPsF45fue6lm+76mmDeHHJgGA9WVfn/37WAstow5nuaYsR9FrtSwLUtO08bdaRct3P9ejDX3kJgDgUjBrL2UYo9GGs3TQaucsLVUzTdOm03Jtaf3+5+AMADBcbTBLy35+jEZdOctCTPWshjOnNML45XtfT230vQeA4cu+vBZd2jPjUowZm0kMCJJTmtJJy0I0mhuMVz2dMUfT8m8AYNhqMEvVrB5wzYjr6deP8cyYSYSzKum6DqOv48Y8Ce5ZN3JUJtcq1VPkEuozAqAqTD9ludQDMFl2DsAAwPDVYDavuJLbct/YTCqcVbUcmr8Qqa7WUT3Tsn6ks591JLd3z3EW7vsjG+4sFwN/AABDN8lwFknfOnJEglYbyhYFr4SANqQlvKnQ9IOKJgAwBpMNZxBtMEtbp5PfBrT8GwAAdkE4Y7JSOW2D2bqnueZ5qbBt+jwAAOarlynMa+3B8FzGMO8xY7nkRDhjstprzNI2OUWxe32a0xsBALaXvlS3b5YglpEZ20uR8v82oOUykwSzsfTFhDMmKV/g9sufL/Ym6hCutWUkRwAATiYDr9X+1aLAZSh9GJn8rEL94qdtempit/SeIzgAAJxM/WmctEU/Mp0AN9br/oUzJilhrA1X21w31j5/08obAACvlt8vq/2rVMi66u+bjXXUdeGMSRLOAAD6p+2jdftn9XTGRRW1MRDOmKTuNWObhrPuaY3CGQDAybV9tLZ/VkfL3uaA+pAIZ0xSdxj9kw4IMvYNBQDAIbTjArT9s1xjNoWD4cIZk9X+mHSOxGyiPR86bZ0frwYAYLn2AHoNY+l3ZRCQdYfLzyiOQ70mTThjsrrVr3V/vDAbhvZHqJ3SCACwO93+Wf6ueyA8lbcEuaESzpi09kcM1/0x6e4PUI91tCAAgNPQ/tZZ+lqbHEDPc1NpGyrhjEmqR1/yJW4DWk51XDQCUB7bDWb1dRLQhDQAgJPLWUm1v7XuD02n/1YvWRny5SbCGZOUL24bpnJEpj1K0z3iki95vT+hLPe3VbZsOAwKAgBwcvVgeMLWpmc1tS3PHxrhjEnKFzZHZRKo2laraN0vc+7L7bVU3j6nbhDybwAATiZ9rfYMpVVSNav9sTw3/08b4llNwhmTlC/vqtaq4WxZE84AAE4moSr9qgzctol6SuPQLzMRzpikNlQtaq32urRFTTgDANheKmX18pFNJJClLzbE0xi7hDMmqRus5rW2lN5emLqoCWcAAKulj5UD3+3PESVgJZjl9MRNJcylL/bJT3zi+JbhEs4AAICDSQirB7cjpzJuG8yiDtpWT2nM36Ge3iicAQAAB1ODWUJVvXRk01MZq1Th8vz2lMZU5Nb9bbS+Ec4AAICDqaMxJlQlnKVytq06aFu9vCSnNib0DZVwBgAADFId3TFhL9WzBLN1h+DvI+EMAAAYrJzCWH/fbOiEMwAAgB4QzgAAAHpAOAMAAOgB4QwAAKAHhDMAAIAeEM4AAAB6QDgDAADoAeEMAACgB4QzAACAHhDOAAAAekA4AwAA6AHhDAAAoAeEMwAAgB4QzgAAAHpAOAMAAOgB4QwAAKAHhDMAAIAeEM4AAAB6QDgDAADoAeEMAACgB4QzAACAHhDOAAAAekA4AwAA6AHhDAAAoAeEMwAAgB4QzoBhuvhn5Yn7frbc9p67yyPPvnR840hdfKE88+9/rdz90z9crrv2bHn6wvHtAMCoCGdAj3y/vPT5j5Q7bnhtueqqqxa0G8rZp2dh7PlHyq3Ht11z9umy/7zy3fIXz36i/Op7ri9nrrqm3PrIl49v39aF2Ud4T+ezzWuzz/vU8+W5T91Xbrl69v9r9hjOEnh/8cfKtUfve21554PPzj514/vPlY/9r2+bff6rypkb/nH52Je/fXzHob1Unv3oneWGM5nOM+XaW+4tT7xwPFNeerrce/M1l+bdmbeV9330D8vLl+4ZmG+WZ+794XLmzM2z5f+N49sAGDvhDOiZ75YvP/yu42Dy2nLT2d8uTz/99Kx9unzy/p+YBYfjcPbyH5SP3H59ufq6Hy9nH//TcvH42Tt38Vvl+c/8p/LAnW8v1xxNU9ruwtnVt/xa+exL35v9/6Xy9Nkbmte+WC48/7Hy/je+7dLnvfB0OXvN7L33Gc6ivk8+57V3lEee60Sbo1C8i89/Ul8uj9yaEHa8PlQXvlAevu31s2n/yfLA5/5yf+vF3glnAFMknAE901aUOiHg4ovlqbPvvbIzvmcXnv6lcsNNP1HuvPuflw/e+qb507WVi+XlL85C5/O1+tQNZ/G98tKzT5XPfH2Wxg4czs5cc0153VVnyut/5mPla23C6XM4u/iX5bPnfrxcfebts0Dz4oCDGQBTJZwBPbMknFUXXy7f+NLnyqcfe6Q8cPbO8p4HPnP5tMaLL32h/OcP/UK549abynVnri033HJHufvXP1wevP8Xy913vqf8yJ3/sTx//NjNrDFdJzIvnDVqOHvdz5Rff+Rsue2Nr7k0Lde8vbz/Nz5bXmqTyIWvlicfeH+56Zozlx5z5s3ltnt/pzx/YY24cvw+1/yzB8vDt183e/6by/sf+9orQWdeOFv4fgnTNx+dBnnVFRWgC+Vrj95Rrp7d/toPPl7+6vjW7z/30fLua/MaP1je/ciXyvePb5+vG84ulBc+9fPlLWfeVN736HOX14dLUoV84orq55k3/kS591NfKRcuPl8e+98z37vT+O3y3MM/cTSNV137D8sj/9+XX7nu75o1lsHs+c8/+X+VO296/aXHXPWa8sbb7iufuhzGs65+tvzG+9uK7GvL33ngD2aR/BUXX/pa+dOjyurR/2af43fLuTv+zvFzzpRr3vKz5aHLFcIL5evPPFp+/e5/WG6+7m+X/+3XHypnb3vzpfl/1evLTe//zfL5y6+13MWX/rh8/N6fKm+pyzTTf/tD5XMvfae89Oz/O/ve/Wz5keveVv7ZR/9DuffoPV5b3nL207O1+HvlpT/5T+Xe23/olc81Z/4s/+yz1/j8b5b3X553s3bmlvLAs8M8QRVgE8IZ0DMXFoagiy9/s/zly7Mu+6xj95E7Ll37lMddvubsu39UHn7XD85ue3257aE/LC9f+Fp5/O4fOnrMmZs+WD708APlVx54svz50attavF07caa4ezqHy4f/Hf/b3ny6d8rj//WL5ZbE2bO/Hh58E+OO/1H1cW3z8LH+8tvfO6FcuHCn5WnzuV00NeVtz/w+SuvIZunhrOzT5VvfeGh8s5c5/amf1Ge/OZxp74bzla833e+9mi5Pa/xup8vT3679s7/rHz8jh+4NC/ffF955jv19uPA9bZz5fPfvSLpzHFlOPvunzxc3nXtdeW2WVC/MiTNJvGbny5n33ZNeeOdv1k+9/VvlwsvfLqcu222npz50VmH/1vl4lcfKe961TTOnvfFB8vbr7q6vPne/16+MwtbL/z+v7p03d+qZTALF9986pfL287cUO78jc+Ur1+YPfepf1Numz3uzNsfKM8efbY/L49/8PrZvP0/ymNf+/alMHT2x8obj9bl75bnP3Vfec9brr38+Y5c/Ep57F//ennksSfK008/UT75wPvKGzMPf+Bsefpoumfh7YUny3235HnXlJs/+FD55JNPlace//fl7K35Xryu/PCDf7Qi9M4cf4+uvuVfld9/YfaZLjxXHn3fmy6F1Oe+VV764sfK3Te97ug9brrz/vKRD/2zcsu1rzsKZ998/rfKe6+9ulx72/3l8edeKheb9eHm+z9zfP3fss8+881PlQ++/jXlTT/3yfK1Cwl7Hy9nb/m7B62YA5wW4QzomXkhaNbp/MZ/Kw/c9vde6aC9akCQi+XbT58tP3B027vKw19ODLlY/urxf1Jem9vO3F4eef4k5wPOm65dWjOcXXFa48vl2Qd+ZPac15f3PPrVo1suPvdweeeZ15a3P/jHx9WUmW8+Vu58zey5199fPr+qcHI5nGWefmv2+j96VBV5273/bfa/mU44W/1+XymP3v6G2TT+yCuVj6P7X1uuuy6Vkeb2v3q8fPC1ryk/9MAfrA4QTTi755P/udx387Xlje//2Jzq4HfKcw+/e/YZfqw8+MUanr4/m4R/VF4zC17X3//Z8r1Z6HnVNM4C1osf/9ly9VU3lXufOV7n1lwGs1RXHn7nbNre/mD54uXJ+Xp57M5UIt9e7v/8bE7W17rl4fLl+pgLf16+9D9mgebo318qj9yeANu5pq518Y/Lg2/P4Dnvadbtuh5d+bzvP/tA+aHZunvmPY+WF45vm69WNW8odz/5F8e3dc1/j1L+ojx5d25v5ll857+Xe998dbnqNf+oPPbN2ZJd8dkvzL7H18zC3C0Pf+l4nZp9/7/+XPkfa1b9AIZMOAN6pg1B3dZ0Bl8VztrnvdJZvdTR6zx3K30MZ3Wa6nO+V1549KdnQeS6cseDnypPPvYfyyMffbDcf88d5aZUfM78dHn0hRUd3CvC2czLnyn33/y62XNvKfd/bjb/rghn67zfy7On3D57zLXltkeem3WzL5ZvPfkL5Q2zsPybH/uVcv0s+F0KdhfLd565r7y5hpeVaji7rvzkHbcejTB55uZ/XT73cu3tV18tj75nFgJfe0d58NNPlMce/fflow/eX+6546ajUxYvhZUaSNpg+GJ5/INvurKyt9YymHnh0fKeM1eV197xYPn0k4+VRx/5v8uD9//zcsdNmd7jEFcDXEaUfPCp8sKrQuWiANSq82B1OLu03GbTfusjK07rPa5qXv2z5eMvLlpXFrzH954p9/7gmVdC2GXH8/Kq62eB7y9XfvZLgX+2bG742fLg0392aT0EmAjhDOiZ2tmddSRnHfdLozU+VZ782L3l1mvfsiScNVWypnL27Sd/vrzu6La2crKNdrr6Gs7qa7ymXHfTj5Zbb731ynbbL5fHv7FhOLt8it5V5ep3PlS+8NxHm3C23vvVzvZr7nysfHP2nGfuvamceefD5bm/eqLc/YYz5cxts8Bw8bgCdcVpjss0pzU+8dlLp93l1Ln7nu5cf3c8385cV2768c70zdptZx8vucrs4vHpl0fTled/+6ly9geuLj9w9qlyea1ZM5zVAwJnrrup/Hjn/W699fZy9vHUri6Wl5/9SLn9+Lq1XAP3Kx//42baFwSgK+whnNWAdcVn7FrwHseh9NXPrY+v82j1Z3/2I3eUN+a1jq7V+5Xy8T/55uxZAOMnnAE9sygEfa+89OU/LF/8i+Ne36vC2cy3/lu59205zev15baHv1AuXL7mbM6ogxsbUjhb1qFf4VXhbObiC+Xxn3vL7HWvK++99+7yY5u+3/f/oDzwQ7OO+Bt+oTz50udn/77muEJ1fKrfUZXmS+WR215f3nD3E5dOn1ypCWez9774tY+Vn3l9rv3qjNQ4d77NUU9tPPPu8vBz3zk+DbBzat+G4eyKebjAxZf+oDx69t3HQeQHy7se/qPj6wLnzNuLf1k+/8i/OL4WLY+vbYfhbK35teI9Foaz5tTPmcWfPTJS6X98ZUCTa99bHv6T9dYMgCETzoCeWTMEzQtnsy75heefLB+68+ZLo+wdVXR+snzwgf9avpyBRE5kzenaWu3ALnjttYLBt8sXH/yx2f/rKYRbmBfOZi6++Mny/oSfKz7/uu9Xr8t6e/mXD//yLPTUa7vqdV1vKh88/+/Kna+Z/X38xUtPWenKcJZ58bWPv7+8fjZ9Z972y+WpOoBJvS5r5TWH9dTGN5TbH/1S+WpOxUyY/FbzqdYMZ5cGEplNx1FF8OimFWZB5A8/VG7NqaA/9EB59mhV7Qag75bnH/2Zo4E1brr7Y+WLR9df7aFyttb8WvAe336y3P262Xu89p+Ux/+q/eCd6+2uMO+zNy5+s/zhA+/unHIKMF7CGdAza4agueFs1pd74b+Uf/KWN5c7Hvl8ef7554/bn5avv1QfcaF8/el/V+6+4yfKez74YHk6vyG2lkXTte3rde0inNXrtq4qV9/2G+W5dYbO71oQzvJeNfxs/n71cWfK6655XTnTnLp4cbYcbztzfPurrlVaphvOZi5+tXz8Z3J649XljT/3O+UbR29x6TTKy9XUowfOV09tvPr2+8qv/fQPXDHM/5E1w9nlATCufk95uPsj3tXLXyqffvr5ZnqOP88P3lueOcqV3QA05/PuI5ytNb8WvMflELZgQJA3/WJ5OmF36Wfv/v7fzNG0nyk/eO8zsygHMG7CGdAz3y1ffvhdsw5eQkA7YtuVLn754XLL0WOuKq+7+8nj64LqABWXbr+yXVve8r7fKM++/JVLA0Qc3XblaVbLLZqu4wEnNn69rr8sT959fee1G7UqccVw73Wamudc+GJ55Oj3yV5bbrjjXx4Pu/5UefKxR8q/ffTzq08ZPH6fuafkXfhCefi2fNYmiKz7ft+6dH1ZTjG94jquyyMOzkLRHR8v69bN5oeVBKzj0xtnt7//41+efYaL5cJzj5Tbj4a7f1u541c/Wh578qmjoegfe+TD5dHPf/P4mTOXR23Msryu3PnY14/vOLbuMigvl+ceuePSICU3vK/86iOfLE8+PQscT36yPPJvf7t8PgElgePad5V7H/tCeeliHaa/GRXzVQGohqary3Xv+dXy8aMh8j9c3n9Drtv6e+W+Z+pvndX16HjwjWOXvy/tCIlzLZhfTz1ePvbQb5b/+nxOPJz/Hnnuy5/71+XmWdi+9rZ/U556IcPkf6k8fn+G0n9T+ZmPf/XSNC797Am7t5drb72vPPbFbx4Nxf/79/1YufrMD88C32xZXfxyefS9Wd+uK+999MvHnxlgPIQzoEe+X176/EfKHTdc6qynnXnju8svfuorV57O1Pmds6uuuaXc+3SGdbhQvvm5B8u70rGs913R0uF+rnzx0Z8rN13z2nLdj/x8+fiX1xkk5Dvl+U/d+8qPDs/aK9P1rS1er+ul8uwjH7j8I84ZIOG+J/7slY7nxT8tj//C3zsedfL15eZf+J3ywsXuoAp3lI88eymkXHktz6ydeWP5kQ98qDzZViPmad/n2lvL/c90h1K/WL579NtnV1b31nu/OmJfd4j2espjTif8ypqd7dn8+uid5Yaj95sFgVvuLU+8UKNkU+E7c335qd/Kj1l3rl+atTPXvbN84IEnOkPv11MbZ4/pVvE2XAa5PuzZR5sfqs4ptj/ygfLAk1+dvcvMNz5Z7mzX0yt+KPxCeeGJe8stR/e/8vkuvvSZ8uDt11/6DEeP/63y//zK3539P4NmPFCeeWkWdB4/W24+Wo/OlGtuPlsez3x5+Q/KRy4/7/py+0f+YDbXl8n8Ol/uvuWNx/MrP3b9vnLuiUz7bNouv8fsM99wR/nQFevJ7LlX/IB0nvtT5d52wI+ln/175RuP/eOjYFvvv/yD4Xnu9z5b7r/+6tntxz+DkNsARkQ4A0biW+VPPvozs4Aw53SsC/+jPHpHfoT3B8odH/+z4xvh1eqpjZdGlqR/ZuHvi0+URx994vi6O4BxEc6Acbh8RL17qtXMxT8tH3/fLJxd/d7yyFdfGQ8Oui6N0nh9+eDjf358CwAcjnAGjMPla1HOlGtv/cXyW4//Xnn66afLU4//h3LuzreXa85cX9770T8uohlX+vPy+AevPxqq/YFP/U55+M4bLv2e23fXO8ESAHZJOANG4mK58I3Plkfv+0flJ2+67vhamQylf2u54+4PlceeffHKUx3hyDfK0/fecnwt2bXlLXf8Wnli1bV5ALAnwhkAAEAPCGcAAAA9IJwBAAD0gHAGAADQA8IZAABADwhnAAAAPSCcAQAA9IBwBgAA0APCGQAAQA8IZwAAAD0gnAEAAPSAcAYAANADwhkAAEAPCGcAAAA9IJwBAAD0gHAGAADQA8IZAABADwhnAAAAPSCcAQAA9IBwBgAA0APCGQAAQA8IZwAAAD0gnAEAAPSAcAYAANADwhkAAEAPCGcAAAA9IJwBAAD0gHAGAADQA8IZAABADwhnAAAAPSCcAQAA9IBwBgAA0APCGQAAQA8IZwAAAKeulP8f+0Ed0Ysc5gkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "Image(\"Fig1_Bilbiie_2020.png\")" + ] + }, + { + "cell_type": "markdown", + "id": "84436104", + "metadata": {}, + "source": [ + "### NK cross in RANK\n", + "\n", + "#### Proposition 1.\n", + "In RANK, the MPC $\\omega$, autonomous expenditure increase $\\Omega_D$ and multiplier $\\Omega$ (for an interest rate cut of persistence $p$) are:\n", + "\\begin{align*}\n", + " &\\omega^* = \\frac{1 - \\beta}{1 - \\beta p}; & \\Omega^*_D = \\frac{\\sigma \\beta}{1 - \\beta p}; & & \\Omega^* = \\frac{\\sigma}{1 - p}\n", + "\\end{align*}" + ] + }, + { + "cell_type": "markdown", + "id": "48e873c5", + "metadata": {}, + "source": [ + "### NK cross in TANK\n", + "See: Bilbiie, 2008\n", + "1. H: Hand-to-Mouth: mass of $\\lambda$\n", + "2. S: Savers: mass of $1 - \\lambda$\n", + "3. $\\chi$: denotes the elasticity of H's consumption (and income) to aggregate income $y_t$\n", + "\\begin{align}\n", + " c_t^H = y_t^H = \\chi y_t\\\\\n", + " \\chi = 1 + \\phi\\Big(1 - \\frac{\\tau^D}{\\lambda}\\Big)\n", + "\\end{align}\n", + "\n", + "#### Proposition 2.\n", + "In TANK, the MPC $\\omega$, autonomous expenditure increase and multiplier $\\Omega$ (for an interest rate cut of persistence $p$) are:\n", + "\\begin{align*}\n", + " &\\omega^* = \\frac{1 - \\beta(1 - \\lambda \\chi)}{1 - \\beta p(1 - \\lambda \\chi)}; & \\Omega^* = \\frac{\\sigma}{1 - p} \\frac{1 - \\lambda}{1 - \\lambda \\chi}\n", + "\\end{align*}\n", + "There is amplification $\\Big(\\frac{\\partial \\Omega}{\\partial \\lambda} > 0 \\Big)$ if and only oif income inequality is countercyclical:\n", + "\\begin{align*}\n", + "\\chi > 1\n", + "\\end{align*}\n" + ] + }, + { + "cell_type": "markdown", + "id": "b0f4eda9", + "metadata": {}, + "source": [ + "### NK in an analytical HANK model\n", + "See: Bilbiie, 2018\n", + "1. Exogeneous stochastic change of status between constrained H and unconstrained S (idiosyncratic uncertainty)\n", + "2. Insurnace is full within type (after idiosyncratic uncertainty is revealed), bu limited across types\n", + "3. Different asset liquidity: bonds are liquid (can be used to self-insure, before idiosyncratic uncertainty is revealed), while stocks are completely illiquid (cannot be used to self-insure)\n", + "4. No bond trading (no equilibrium liquidity)\n", + "\n", + "Hence, mass of Hand-to-Mouth:\n", + "$$\n", + "\\lambda = \\frac{1 - s}{2 - s - h}\n", + "$$\n", + "And the multipliers are:\n", + "\\begin{align*}\n", + " &\\omega = \\frac{1 - \\beta(1 - \\lambda \\chi)}{1 - \\delta \\beta p(1 - \\lambda \\chi)}; & \\Omega = \\frac{\\sigma}{1 - \\delta p} \\frac{1 - \\lambda}{1 - \\lambda \\chi}\n", + "\\end{align*}\n" + ] + }, + { + "cell_type": "markdown", + "id": "24cd3339", + "metadata": {}, + "source": [ + "#### Additional Application: forward guidance puzzle\n", + "#### Proposition 4:\n", + "The multiplier of forward guidance FG (an interest rate cut in T periods) and the MPC in the analytical HANK model are:\n", + "\\begin{align*}\n", + " &\\Omega^F_T = \\sigma \\frac{1 - \\lambda}{1 - \\lambda \\chi}delta^T; & \\omega^F_T = 1 - \\Big(\\beta(1 - \\lambda \\chi)\\Big)^{1+T}\n", + "\\end{align*}\n", + "The multiplier decreases with the horizon $\\frac{\\partial \\Omega_T^F}{\\partial T} < 0$, thus resolving the FG puzzle, if and only if there is discounting $\\delta < 1$. While in the compounding case, the multiplier increases with the horizon $\\frac{\\partial \\Omega_T^F}{\\partial T} > 0$ and the FG puzzle is aggravated." + ] + }, { "cell_type": "markdown", "id": "5fff020b-2b55-4662-992c-36e2a7f7c814", "metadata": {}, "source": [ - "### Reference:\n", + "### References:\n", + "Bilbiie, Florin O. \"Limited asset markets participation, monetary policy and (inverted) aggregate demand logic.\" Journal of economic theory 140.1 (2008): 162-196.\n", + "\n", + "Bilbiie, Florin O. \"Monetary policy and heterogeneity: An analytical framework.\" (2018).\n", + "\n", "Bilbiie, Florin O. \"The new Keynesian cross.\" Journal of Monetary Economics 114 (2020): 90-108." ] }, { "cell_type": "code", "execution_count": null, - "id": "4c65d322-08db-4072-b5ea-e68bfba43365", + "id": "5d7fee7c", "metadata": {}, "outputs": [], "source": [] @@ -39,7 +162,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -53,7 +176,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.11" + "version": "3.8.8" } }, "nbformat": 4,