forked from noaa-oar-arl/monetio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tropomi_l2.py
177 lines (137 loc) · 5.19 KB
/
test_tropomi_l2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import shutil
import warnings
from pathlib import Path
import numpy as np
import pandas as pd
import pytest
from filelock import FileLock
from monetio.sat._tropomi_l2_no2_mm import open_dataset, read_trpdataset
HERE = Path(__file__).parent
def retrieve_test_file():
fn = "TROPOMI-L2-NO2-20190715.nc"
# Download to tests/data if not already present
p = HERE / "data" / fn
if not p.is_file():
warnings.warn(f"Downloading test file {fn} for TROPOMI L2 test")
import requests
r = requests.get(
"https://csl.noaa.gov/groups/csl4/modeldata/melodies-monet/data/"
f"example_observation_data/satellite/{fn}",
stream=True,
)
r.raise_for_status()
with open(p, "wb") as f:
f.write(r.content)
return p
@pytest.fixture(scope="module")
def test_file_path(tmp_path_factory, worker_id):
if worker_id == "master":
# Not executing with multiple workers;
# let pytest's fixture caching do its job
return retrieve_test_file()
# Get the temp directory shared by all workers
root_tmp_dir = tmp_path_factory.getbasetemp().parent
# Copy to the shared test location
p_test = root_tmp_dir / "tropomi_l2_test.he5"
with FileLock(p_test.as_posix() + ".lock"):
if p_test.is_file():
return p_test
else:
p = retrieve_test_file()
shutil.copy(p, p_test)
return p_test
T_REF = pd.Timestamp("2019-07-15")
KEY = T_REF.strftime(r"%Y-%m-%d")
def test_open_dataset(test_file_path):
vn = "nitrogendioxide_tropospheric_column" # mol m-2
ds = open_dataset(test_file_path, vn)[KEY][0]
with pytest.warns(FutureWarning, match="read_trpdataset is an alias"):
ds_alias = read_trpdataset(test_file_path, vn)[KEY][0]
assert ds_alias.identical(ds)
assert set(ds.coords) == {"time", "lat", "lon", "scan_time"}
assert set(ds) == {vn}
assert 0 < ds[vn].mean() < 2e-4
assert ds[vn].max() < 1e-3
assert ds[vn].min() < 0
assert ds.time.ndim == 0
assert pd.Timestamp(ds.time.values) == T_REF
assert (ds.scan_time.dt.floor("D") == T_REF).all()
ds2 = open_dataset(
test_file_path,
{
vn: {"minimum": 1e-9},
"latitude_bounds": {},
"longitude_bounds": {},
"preslev": {},
"qa_value": None,
},
)[KEY][0]
assert not ds2[vn].isnull().all()
assert ds2[vn].min() >= 1e-9
for i in range(4):
assert not ds2[f"latitude_bounds_{i}"].isnull().any()
assert ds2[f"latitude_bounds_{i}"].min() >= -90
assert ds2[f"latitude_bounds_{i}"].max() <= 90
assert not ds2[f"longitude_bounds_{i}"].isnull().any()
assert ds2[f"longitude_bounds_{i}"].min() >= -180
assert ds2[f"longitude_bounds_{i}"].max() <= 180
assert not ds2["preslev"].isnull().all()
assert ds2.preslev.mean(dim=("y", "x")).diff("z").to_series().lt(0).all(), "surface first"
assert not ds2["troppres"].isnull().all()
assert ds2["troppres"].mean() < ds2["preslev"].mean()
qa = ds2["qa_value"]
assert not ds2[vn].where(qa <= 0.7).isnull().all()
def test_open_dataset_qa(test_file_path):
vn = "nitrogendioxide_tropospheric_column" # mol m-2
# Based on example YML from Meng
ds = open_dataset(
test_file_path,
{
"qa_value": {"quality_flag_min": 0.7, "var_applied": [vn], "fillvalue": None},
vn: {"scale": 60221410000000000000, "fillvalue": 9.96921e36},
"averaging_kernel": {"fillvalue": 9.96921e36},
"air_mass_factor_total": {"fillvalue": 9.96921e36},
"air_mass_factor_troposphere": {"fillvalue": 9.96921e36},
"latitude": None,
"longitude": None,
"preslev": {
"tm5_constant_a": {"group": ["PRODUCT"], "maximum": 9e36},
"tm5_constant_b": {"group": ["PRODUCT"], "maximum": 9e36},
"surface_pressure": {"group": ["PRODUCT/SUPPORT_DATA/INPUT_DATA"], "maximum": 9e36},
"tm5_tropopause_layer_index": {"group": ["PRODUCT"]},
},
},
)[KEY][0]
# assert {vn, "ph", "phb", "pb", "p", "T"} <= set(ds.data_vars)
qa = ds["qa_value"]
assert ds[vn].where(qa <= 0.7).isnull().all()
def test_open_dataset_opts(test_file_path):
vn = "nitrogendioxide_tropospheric_column" # mol m-2
def get(**kwargs):
granules = open_dataset(
test_file_path,
{
vn: kwargs,
},
)
return granules[KEY][0]
def om(x):
return np.floor(np.log10(x))
ds0 = get()
assert om(ds0[vn].mean()) == -6
assert ds0[vn].min() < 0
assert om(ds0[vn].max()) == -4
assert np.isclose(ds0[vn], 0, atol=0).sum() == 0
ds = get(scale=1000)
assert om(ds[vn].mean()) == -3
ds = get(minimum=0)
assert ds[vn].min() >= 0
n = ds[vn].isnull().sum()
tgt = 1.0311603546142578e-05
assert np.isclose(ds[vn], tgt, atol=0).sum() > 0
ds = get(maximum=1e-5)
assert ds[vn].max() <= 1e-5
ds = get(minimum=0, fillvalue=tgt)
assert ds[vn].min() > 0
assert ds[vn].isnull().sum() > n
assert np.isclose(ds[vn], tgt, atol=0).sum() == 0