-
-
Notifications
You must be signed in to change notification settings - Fork 99
/
paths.go
333 lines (273 loc) · 8.69 KB
/
paths.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
package graph
import (
"errors"
"fmt"
"math"
)
var ErrTargetNotReachable = errors.New("target vertex not reachable from source")
// CreatesCycle determines whether adding an edge between the two given vertices
// would introduce a cycle in the graph. CreatesCycle will not create an edge.
//
// A potential edge would create a cycle if the target vertex is also a parent
// of the source vertex. In order to determine this, CreatesCycle runs a DFS.
func CreatesCycle[K comparable, T any](g Graph[K, T], source, target K) (bool, error) {
if _, err := g.Vertex(source); err != nil {
return false, fmt.Errorf("could not get vertex with hash %v: %w", source, err)
}
if _, err := g.Vertex(target); err != nil {
return false, fmt.Errorf("could not get vertex with hash %v: %w", target, err)
}
if source == target {
return true, nil
}
predecessorMap, err := g.PredecessorMap()
if err != nil {
return false, fmt.Errorf("failed to get predecessor map: %w", err)
}
stack := newStack[K]()
visited := make(map[K]bool)
stack.push(source)
for !stack.isEmpty() {
currentHash, _ := stack.pop()
if _, ok := visited[currentHash]; !ok {
// If the adjacent vertex also is the target vertex, the target is a
// parent of the source vertex. An edge would introduce a cycle.
if currentHash == target {
return true, nil
}
visited[currentHash] = true
for adjacency := range predecessorMap[currentHash] {
stack.push(adjacency)
}
}
}
return false, nil
}
// ShortestPath computes the shortest path between a source and a target vertex
// under consideration of the edge weights. It returns a slice of hash values of
// the vertices forming that path.
//
// The returned path includes the source and target vertices. If the target is
// not reachable from the source, ErrTargetNotReachable will be returned. Should
// there be multiple shortest paths, and arbitrary one will be returned.
//
// ShortestPath has a time complexity of O(|V|+|E|log(|V|)).
func ShortestPath[K comparable, T any](g Graph[K, T], source, target K) ([]K, error) {
weights := make(map[K]float64)
visited := make(map[K]bool)
weights[source] = 0
visited[target] = true
queue := newPriorityQueue[K]()
adjacencyMap, err := g.AdjacencyMap()
if err != nil {
return nil, fmt.Errorf("could not get adjacency map: %w", err)
}
for hash := range adjacencyMap {
if hash != source {
weights[hash] = math.Inf(1)
visited[hash] = false
}
queue.Push(hash, weights[hash])
}
// bestPredecessors stores the cheapest or least-weighted predecessor for
// each vertex. Given an edge AC with weight=4 and an edge BC with weight=2,
// the cheapest predecessor for C is B.
bestPredecessors := make(map[K]K)
for queue.Len() > 0 {
vertex, _ := queue.Pop()
hasInfiniteWeight := math.IsInf(weights[vertex], 1)
for adjacency, edge := range adjacencyMap[vertex] {
edgeWeight := edge.Properties.Weight
// Setting the weight to 1 is required for unweighted graphs whose
// edge weights are 0. Otherwise, all paths would have a sum of 0
// and a random path would be returned.
if !g.Traits().IsWeighted {
edgeWeight = 1
}
weight := weights[vertex] + float64(edgeWeight)
if weight < weights[adjacency] && !hasInfiniteWeight {
weights[adjacency] = weight
bestPredecessors[adjacency] = vertex
queue.UpdatePriority(adjacency, weight)
}
}
}
path := []K{target}
current := target
for current != source {
// If the current vertex is not present in bestPredecessors, current is
// set to the zero value of K. Without this check, this would lead to an
// endless prepending of zero values to the path. Also, the target would
// not be reachable from one of the preceding vertices.
if _, ok := bestPredecessors[current]; !ok {
return nil, ErrTargetNotReachable
}
current = bestPredecessors[current]
path = append([]K{current}, path...)
}
return path, nil
}
type sccState[K comparable] struct {
adjacencyMap map[K]map[K]Edge[K]
components [][]K
stack *stack[K]
visited map[K]struct{}
lowlink map[K]int
index map[K]int
time int
}
// StronglyConnectedComponents detects all strongly connected components within
// the graph and returns the hashes of the vertices shaping these components, so
// each component is represented by a []K.
//
// StronglyConnectedComponents can only run on directed graphs.
func StronglyConnectedComponents[K comparable, T any](g Graph[K, T]) ([][]K, error) {
if !g.Traits().IsDirected {
return nil, errors.New("SCCs can only be detected in directed graphs")
}
adjacencyMap, err := g.AdjacencyMap()
if err != nil {
return nil, fmt.Errorf("could not get adjacency map: %w", err)
}
state := &sccState[K]{
adjacencyMap: adjacencyMap,
components: make([][]K, 0),
stack: newStack[K](),
visited: make(map[K]struct{}),
lowlink: make(map[K]int),
index: make(map[K]int),
}
for hash := range state.adjacencyMap {
if _, ok := state.visited[hash]; !ok {
findSCC(hash, state)
}
}
return state.components, nil
}
func findSCC[K comparable](vertexHash K, state *sccState[K]) {
state.stack.push(vertexHash)
state.visited[vertexHash] = struct{}{}
state.index[vertexHash] = state.time
state.lowlink[vertexHash] = state.time
state.time++
for adjacency := range state.adjacencyMap[vertexHash] {
if _, ok := state.visited[adjacency]; !ok {
findSCC(adjacency, state)
smallestLowlink := math.Min(
float64(state.lowlink[vertexHash]),
float64(state.lowlink[adjacency]),
)
state.lowlink[vertexHash] = int(smallestLowlink)
} else {
// If the adjacent vertex already is on the stack, the edge joining
// the current and the adjacent vertex is a back ege. Therefore, the
// lowlink value of the vertex has to be updated to the index of the
// adjacent vertex if it is smaller than the current lowlink value.
if state.stack.contains(adjacency) {
smallestLowlink := math.Min(
float64(state.lowlink[vertexHash]),
float64(state.index[adjacency]),
)
state.lowlink[vertexHash] = int(smallestLowlink)
}
}
}
// If the lowlink value of the vertex is equal to its DFS value, this is the
// head vertex of a strongly connected component that's shaped by the vertex
// and all vertices on the stack.
if state.lowlink[vertexHash] == state.index[vertexHash] {
var hash K
var component []K
for hash != vertexHash {
hash, _ = state.stack.pop()
component = append(component, hash)
}
state.components = append(state.components, component)
}
}
// AllPathsBetween computes and returns all paths between two given vertices. A
// path is represented as a slice of vertex hashes. The returned slice contains
// these paths.
//
// AllPathsBetween utilizes a non-recursive, stack-based implementation. It has
// an estimated runtime complexity of O(n^2) where n is the number of vertices.
func AllPathsBetween[K comparable, T any](g Graph[K, T], start, end K) ([][]K, error) {
adjacencyMap, err := g.AdjacencyMap()
if err != nil {
return nil, err
}
// The algorithm used relies on stacks instead of recursion. It is described
// here: https://boycgit.github.io/all-paths-between-two-vertex/
mainStack := newStack[K]()
viceStack := newStackOfStacks[K]()
checkEmpty := func() error {
if mainStack.isEmpty() || viceStack.isEmpty() {
return errors.New("empty stack")
}
return nil
}
buildLayer := func(element K) {
mainStack.push(element)
newElements := newStack[K]()
for e := range adjacencyMap[element] {
var contains bool
mainStack.forEach(func(k K) {
if e == k {
contains = true
}
})
if contains {
continue
}
newElements.push(e)
}
viceStack.push(newElements)
}
buildStack := func() error {
if err = checkEmpty(); err != nil {
return fmt.Errorf("unable to build stack: %w", err)
}
elements, _ := viceStack.top()
for !elements.isEmpty() {
element, _ := elements.pop()
buildLayer(element)
elements, _ = viceStack.top()
}
return nil
}
removeLayer := func() error {
if err = checkEmpty(); err != nil {
return fmt.Errorf("unable to remove layer: %w", err)
}
if e, _ := viceStack.top(); !e.isEmpty() {
return errors.New("the top element of vice-stack is not empty")
}
_, _ = mainStack.pop()
_, _ = viceStack.pop()
return nil
}
buildLayer(start)
allPaths := make([][]K, 0)
for !mainStack.isEmpty() {
v, _ := mainStack.top()
adjs, _ := viceStack.top()
if adjs.isEmpty() {
if v == end {
path := make([]K, 0)
mainStack.forEach(func(k K) {
path = append(path, k)
})
allPaths = append(allPaths, path)
}
err = removeLayer()
if err != nil {
return nil, err
}
} else {
if err = buildStack(); err != nil {
return nil, err
}
}
}
return allPaths, nil
}