-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmodules.py
669 lines (579 loc) · 27.6 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import math
import torch
import torchvision
import numpy as np
from torch import nn
from torchtools.utils import Diffuzz
class LayerNorm2d(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
class GlobalResponseNorm(nn.Module): # from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class AttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
nn.Linear(c_cond, c)
)
def forward(self, x, kv):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class FeedForwardBlock(nn.Module):
def __init__(self, c, dropout=0.0):
super().__init__()
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
nn.Linear(c * 4, c)
)
def forward(self, x):
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
class TimestepBlock(nn.Module):
def __init__(self, c, c_timestep):
super().__init__()
self.mapper = nn.Linear(c_timestep, c * 2)
def forward(self, x, t):
a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1)
return x * (1 + a) + b
class Attention2D(nn.Module):
def __init__(self, c, nhead, dropout=0.0):
super().__init__()
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
def forward(self, x, kv, self_attn=False):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
x = self.attn(x, kv, kv, need_weights=False)[0]
x = x.permute(0, 2, 1).view(*orig_shape)
return x
class ResBlockStageB(nn.Module):
def __init__(self, c, c_skip=None, kernel_size=3, dropout=0.0):
super().__init__()
self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size//2, groups=c)
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c+c_skip, c*4),
nn.GELU(),
GlobalResponseNorm(c*4),
nn.Dropout(dropout),
nn.Linear(c*4, c)
)
def forward(self, x, x_skip=None):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
class ResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):
super().__init__()
self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
nn.Linear(c * 4, c)
)
def forward(self, x, x_skip=None):
x_res = x
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1)
x = self.channelwise(x).permute(0, 3, 1, 2)
return x + x_res
class DiffNeXt(nn.Module):
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1024, c_hidden=[320, 640, 1280, 1280],
nhead=[-1, 10, 20, 20], blocks=[4, 4, 14, 4], level_config=['CT', 'CTA', 'CTA', 'CTA'],
inject_effnet=[False, True, True, True], effnet_embd=16, clip_embd=1024, kernel_size=3, dropout=0.1,
self_attn=True):
super().__init__()
self.c_r = c_r
self.c_cond = c_cond
if not isinstance(dropout, list):
dropout = [dropout] * len(c_hidden)
# CONDITIONING
self.clip_mapper = nn.Linear(clip_embd, c_cond)
self.effnet_mappers = nn.ModuleList([
nn.Conv2d(effnet_embd, c_cond, kernel_size=1) if inject else None for inject in
inject_effnet + list(reversed(inject_effnet))
])
self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1),
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
)
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0):
if block_type == 'C':
return ResBlockStageB(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
elif block_type == 'A':
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
elif block_type == 'F':
return FeedForwardBlock(c_hidden, dropout=dropout)
elif block_type == 'T':
return TimestepBlock(c_hidden, c_r)
else:
raise Exception(f'Block type {block_type} not supported')
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
for i in range(len(c_hidden)):
down_block = nn.ModuleList()
if i > 0:
down_block.append(nn.Sequential(
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
))
for _ in range(blocks[i]):
for block_type in level_config[i]:
c_skip = c_cond if inject_effnet[i] else 0
down_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i]))
self.down_blocks.append(down_block)
# -- up blocks
self.up_blocks = nn.ModuleList()
for i in reversed(range(len(c_hidden))):
up_block = nn.ModuleList()
for j in range(blocks[i]):
for k, block_type in enumerate(level_config[i]):
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
c_skip += c_cond if inject_effnet[i] else 0
up_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i]))
if i > 0:
up_block.append(nn.Sequential(
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
))
self.up_blocks.append(up_block)
# OUTPUT
self.clf = nn.Sequential(
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_hidden[0], 2 * c_out * (patch_size ** 2), kernel_size=1),
nn.PixelShuffle(patch_size),
)
# --- WEIGHT INIT ---
self.apply(self._init_weights) # General init
for mapper in self.effnet_mappers:
if mapper is not None:
nn.init.normal_(mapper.weight, std=0.02) # conditionings
nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
nn.init.constant_(self.clf[1].weight, 0) # outputs
# blocks
for level_block in self.down_blocks + self.up_blocks:
for block in level_block:
if isinstance(block, ResBlockStageB) or isinstance(block, FeedForwardBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks))
elif isinstance(block, TimestepBlock):
nn.init.constant_(block.mapper.weight, 0)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def gen_c_embeddings(self, clip):
clip = self.clip_mapper(clip)
clip = self.seq_norm(clip)
return clip
def _down_encode(self, x, r_embed, effnet, clip):
level_outputs = []
for i, down_block in enumerate(self.down_blocks):
effnet_c = None
for block in down_block:
if isinstance(block, ResBlockStageB):
if effnet_c is None and self.effnet_mappers[i] is not None:
effnet_c = self.effnet_mappers[i](nn.functional.interpolate(
effnet.float(), size=x.shape[-2:], mode='bicubic', antialias=True, align_corners=True
))
skip = effnet_c if self.effnet_mappers[i] is not None else None
x = block(x, skip)
elif isinstance(block, AttnBlock):
x = block(x, clip)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, effnet, clip):
x = level_outputs[0]
for i, up_block in enumerate(self.up_blocks):
effnet_c = None
for j, block in enumerate(up_block):
if isinstance(block, ResBlockStageB):
if effnet_c is None and self.effnet_mappers[len(self.down_blocks) + i] is not None:
effnet_c = self.effnet_mappers[len(self.down_blocks) + i](nn.functional.interpolate(
effnet.float(), size=x.shape[-2:], mode='bicubic', antialias=True, align_corners=True
))
skip = level_outputs[i] if j == 0 and i > 0 else None
if effnet_c is not None:
if skip is not None:
skip = torch.cat([skip, effnet_c], dim=1)
else:
skip = effnet_c
x = block(x, skip)
elif isinstance(block, AttnBlock):
x = block(x, clip)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
return x
def forward(self, x, r, effnet, clip, x_cat=None, eps=1e-3, return_noise=True):
if x_cat is not None:
x = torch.cat([x, x_cat], dim=1)
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r)
clip = self.gen_c_embeddings(clip)
# Model Blocks
x_in = x
x = self.embedding(x)
level_outputs = self._down_encode(x, r_embed, effnet, clip)
x = self._up_decode(level_outputs, r_embed, effnet, clip)
a, b = self.clf(x).chunk(2, dim=1)
b = b.sigmoid() * (1 - eps * 2) + eps
if return_noise:
return (x_in - a) / b
else:
return a, b
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data * (1 - beta)
class Paella(nn.Module):
def __init__(self, c_in=256, c_out=256, num_labels=8192, c_r=64, patch_size=2, c_cond=1024,
c_hidden=[640, 1280, 1280], nhead=[-1, 16, 16], blocks=[4, 12, 4], level_config=['CT', 'CTA', 'CTA'],
effnet_embd=16, byt5_embd=1536, kernel_size=3, dropout=0.1, self_attn=True):
super().__init__()
self.c_r = c_r
self.c_cond = c_cond
self.num_labels = num_labels
if not isinstance(dropout, list):
dropout = [dropout] * len(c_hidden)
# CONDITIONING
self.byt5_mapper = nn.Linear(byt5_embd, c_cond)
self.effnet_mapper = nn.Linear(effnet_embd, c_cond)
self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
self.in_mapper = nn.Sequential(
nn.Embedding(num_labels, c_in),
nn.LayerNorm(c_in, elementwise_affine=False, eps=1e-6)
)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1),
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
)
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0):
if block_type == 'C':
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
elif block_type == 'A':
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
elif block_type == 'F':
return FeedForwardBlock(c_hidden, dropout=dropout)
elif block_type == 'T':
return TimestepBlock(c_hidden, c_r)
else:
raise Exception(f'Block type {block_type} not supported')
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
for i in range(len(c_hidden)):
down_block = nn.ModuleList()
if i > 0:
down_block.append(nn.Sequential(
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
))
for _ in range(blocks[i]):
for block_type in level_config[i]:
down_block.append(get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i]))
self.down_blocks.append(down_block)
# -- up blocks
self.up_blocks = nn.ModuleList()
for i in reversed(range(len(c_hidden))):
up_block = nn.ModuleList()
for j in range(blocks[i]):
for k, block_type in enumerate(level_config[i]):
up_block.append(get_block(block_type, c_hidden[i], nhead[i],
c_skip=c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0,
dropout=dropout[i]))
if i > 0:
up_block.append(nn.Sequential(
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
))
self.up_blocks.append(up_block)
# OUTPUT
self.clf = nn.Sequential(
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1),
nn.PixelShuffle(patch_size),
)
self.out_mapper = nn.Sequential(
LayerNorm2d(c_out, elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_out, num_labels, kernel_size=1, bias=False)
)
# --- WEIGHT INIT ---
self.apply(self._init_weights) # General init
nn.init.normal_(self.byt5_mapper.weight, std=0.02) # conditionings
nn.init.normal_(self.effnet_mapper.weight, std=0.02)
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
nn.init.constant_(self.clf[1].weight, 0) # outputs
nn.init.normal_(self.in_mapper[0].weight, std=np.sqrt(1 / num_labels)) # out mapper
self.out_mapper[-1].weight.data = self.in_mapper[0].weight.data[:, :, None, None].clone()
# blocks
for level_block in self.down_blocks + self.up_blocks:
for block in level_block:
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks))
elif isinstance(block, TimestepBlock):
nn.init.constant_(block.mapper.weight, 0)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def gen_c_embeddings(self, effnet, byt5):
effnet = effnet.permute(0, 2, 3, 1).view(effnet.size(0), -1, effnet.size(1))
seq = self.effnet_mapper(effnet)
if byt5 is not None:
byt5 = self.byt5_mapper(byt5)
seq = torch.cat([seq, byt5], dim=1)
seq = self.seq_norm(seq)
return seq
def _down_encode(self, x, r_embed, c_embed):
level_outputs = []
for down_block in self.down_blocks:
for block in down_block:
if isinstance(block, ResBlock):
x = block(x)
elif isinstance(block, AttnBlock):
x = block(x, c_embed)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, c_embed):
x = level_outputs[0]
for i, up_block in enumerate(self.up_blocks):
for j, block in enumerate(up_block):
if isinstance(block, ResBlock):
x = block(x, level_outputs[i] if j == 0 and i > 0 else None)
elif isinstance(block, AttnBlock):
x = block(x, c_embed)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
return x
def forward(self, x, r, effnet, byt5, x_cat=None):
if x_cat is not None:
x = torch.cat([x, x_cat], dim=1)
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r)
c_embed = self.gen_c_embeddings(effnet, byt5)
# Model Blocks
x = self.embedding(self.in_mapper(x).permute(0, 3, 1, 2))
level_outputs = self._down_encode(x, r_embed, c_embed)
x = self._up_decode(level_outputs, r_embed, c_embed)
x = self.out_mapper(self.clf(x))
return x
def add_noise(self, x, t, mask=None, random_x=None):
if mask is None:
mask = (torch.rand_like(x.float()) <= t[:, None, None]).long()
if random_x is None:
random_x = torch.randint_like(x, 0, self.num_labels)
x = x * (1 - mask) + random_x * mask
return x, mask
def get_loss_weight(self, t, mask, min_val=0.3):
return 1 - (1 - mask) * ((1 - t) * (1 - min_val))[:, None, None]
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data * (1 - beta)
def sample(model, model_inputs, latent_shape, unconditional_inputs=None, init_x=None, steps=12, renoise_steps=None, temperature = (0.7, 0.3), cfg=(8.0, 8.0), mode = 'multinomial', t_start=1.0, t_end=0.0, sampling_conditional_steps=None, sampling_quant_steps=None, attn_weights=None): # 'quant', 'multinomial', 'argmax'
device = unconditional_inputs["byt5"].device
if sampling_conditional_steps is None:
sampling_conditional_steps = steps
if sampling_quant_steps is None:
sampling_quant_steps = steps
if renoise_steps is None:
renoise_steps = steps-1
if unconditional_inputs is None:
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
intermediate_images = []
# with torch.inference_mode():
init_noise = torch.randint(0, model.num_labels, size=latent_shape, device=device)
if init_x != None:
sampled = init_x
else:
sampled = init_noise.clone()
t_list = torch.linspace(t_start, t_end, steps+1)
temperatures = torch.linspace(temperature[0], temperature[1], steps)
cfgs = torch.linspace(cfg[0], cfg[1], steps)
if cfg is not None:
model_inputs = {k:torch.cat([v, v_u]) for (k, v), (k_u, v_u) in zip(model_inputs.items(), unconditional_inputs.items())}
for i, tv in enumerate(t_list[:steps]):
if i >= sampling_quant_steps:
mode = "quant"
t = torch.ones(latent_shape[0], device=device) * tv
if cfg is not None and i < sampling_conditional_steps:
logits, uncond_logits = model(torch.cat([sampled]*2), torch.cat([t]*2), **model_inputs).chunk(2)
logits = logits * cfgs[i] + uncond_logits * (1-cfgs[i])
else:
logits = model(sampled, t, **model_inputs)
scores = logits.div(temperatures[i]).softmax(dim=1)
if mode == 'argmax':
sampled = logits.argmax(dim=1)
elif mode == 'multinomial':
sampled = scores.permute(0, 2, 3, 1).reshape(-1, logits.size(1))
sampled = torch.multinomial(sampled, 1)[:, 0].view(logits.size(0), *logits.shape[2:])
elif mode == 'quant':
sampled = scores.permute(0, 2, 3, 1) @ vqmodel.vquantizer.codebook.weight.data
sampled = vqmodel.vquantizer.forward(sampled, dim=-1)[-1]
else:
raise Exception(f"Mode '{mode}' not supported, use: 'quant', 'multinomial' or 'argmax'")
intermediate_images.append(sampled)
if i < renoise_steps:
t_next = torch.ones(latent_shape[0], device=device) * t_list[i+1]
sampled = model.add_noise(sampled, t_next, random_x=init_noise)[0]
intermediate_images.append(sampled)
return sampled, intermediate_images
class EfficientNetEncoder(nn.Module):
def __init__(self, c_latent=16, effnet="efficientnet_v2_s"):
super().__init__()
if effnet == "efficientnet_v2_s":
self.backbone = torchvision.models.efficientnet_v2_s(weights='DEFAULT').features.eval()
else:
print("Using EffNet L.")
self.backbone = torchvision.models.efficientnet_v2_l(weights='DEFAULT').features.eval()
self.mapper = nn.Sequential(
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
)
def forward(self, x):
return self.mapper(self.backbone(x)).add(1.).div(42.)
class Wrapper(nn.Module):
def __init__(self, effnet, generator, device=None):
super().__init__()
self.effnet = effnet
self.generator = generator
self.diffuzz = Diffuzz(device=device)
def forward(self, x, r, effnet_x, byt5, x_cat=None):
effnet = self.effnet(effnet_x)
if np.random.rand() < 0.05:
effnet = 0 * effnet
elif np.random.rand() < 0.3:
effnet = self.noise_effnet_embeds(effnet)
return self.generator(x, r, effnet, byt5, x_cat)
def noise_effnet_embeds(self, effnet):
noise_t = torch.rand(effnet.size(0), device=effnet.device) * 0.5
effnet = self.diffuzz.diffuse(effnet, noise_t)[0]
return effnet
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data * (1 - beta)
class Prior(nn.Module):
def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, latent_size=(12, 12), dropout=0.1):
super().__init__()
self.c_r = c_r
self.projection = nn.Conv2d(c_in, c, kernel_size=1)
self.cond_mapper = nn.Sequential(
nn.Linear(c_cond, c),
nn.LeakyReLU(0.2),
nn.Linear(c, c),
)
self.blocks = nn.ModuleList()
for _ in range(depth):
self.blocks.append(ResBlock(c, dropout=dropout))
self.blocks.append(TimestepBlock(c, c_r))
self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout))
self.out = nn.Sequential(
LayerNorm2d(c, elementwise_affine=False, eps=1e-6),
nn.Conv2d(c, c_in * 2, kernel_size=1),
)
self.apply(self._init_weights) # General init
nn.init.normal_(self.projection.weight, std=0.02) # inputs
nn.init.normal_(self.cond_mapper[0].weight, std=0.02) # conditionings
nn.init.normal_(self.cond_mapper[-1].weight, std=0.02) # conditionings
nn.init.constant_(self.out[1].weight, 0) # outputs
# blocks
for block in self.blocks:
if isinstance(block, ResBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / depth)
elif isinstance(block, TimestepBlock):
nn.init.constant_(block.mapper.weight, 0)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def forward(self, x, r, c):
x_in = x
x = self.projection(x)
c_embed = self.cond_mapper(c)
r_embed = self.gen_r_embedding(r)
for block in self.blocks:
if isinstance(block, AttnBlock):
x = block(x, c_embed)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
a, b = self.out(x).chunk(2, dim=1)
# denoised = a / (1-(1-b).pow(2)).sqrt()
return (x_in - a) / ((1 - b).abs() + 1e-5)
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data * (1 - beta)