diff --git a/math/BigInteger-ext.js b/math/BigInteger-ext.js index f48a304d8b..34e4f0318b 100644 --- a/math/BigInteger-ext.js +++ b/math/BigInteger-ext.js @@ -15,14 +15,14 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (public) return value as integer function bnIntValue() { - if(this.s < 0) { + if(this.s < 0) { if(this.t == 1) return this[0]-this._DV; else if(this.t == 0) return -1; - } - else if(this.t == 1) return this[0]; - else if(this.t == 0) return 0; - // assumes 16 < DB < 32 - return ((this[1]&((1<<(32-this._DB))-1))< 0 function bnSigNum() { - if(this.s < 0) return -1; - else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; - else return 1; + if(this.s < 0) return -1; + else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; + else return 1; } // (protected) convert to radix string function bnpToRadix(b) { - if(b == null) b = 10; - if(this.signum() == 0 || b < 2 || b > 36) return "0"; - var cs = this._chunkSize(b); - var a = Math.pow(b,cs); - var d = nbv(a), y = nbi(), z = nbi(), r = ""; - this._divRemTo(d,y,z); - while(y.signum() > 0) { + if(b == null) b = 10; + if(this.signum() == 0 || b < 2 || b > 36) return "0"; + var cs = this._chunkSize(b); + var a = Math.pow(b,cs); + var d = nbv(a), y = nbi(), z = nbi(), r = ""; + this._divRemTo(d,y,z); + while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y._divRemTo(d,y,z); - } - return z.intValue().toString(b) + r; + } + return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s,b) { - this._fromInt(0); - if(b == null) b = 10; - var cs = this._chunkSize(b); - var d = Math.pow(b,cs), mi = false, j = 0, w = 0; - for(var i = 0; i < s.length; ++i) { - var x = intAt(s,i); + this._fromInt(0); + if(b == null) b = 10; + var cs = this._chunkSize(b); + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; + for(var i = 0; i < s.length; ++i) { + var x = this._intAt(s,i); if(x < 0) { - if(s.charAt(i) == "-" && this.signum() == 0) mi = true; - continue; + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; } w = b*w+x; if(++j >= cs) { - this._dMultiply(d); - this._dAddOffset(w,0); - j = 0; - w = 0; + this._dMultiply(d); + this._dAddOffset(w,0); + j = 0; + w = 0; } - } - if(j > 0) { + } + if(j > 0) { this._dMultiply(Math.pow(b,j)); this._dAddOffset(w,0); - } - if(mi) BigInteger.ZERO._subTo(this,this); + } + if(mi) BigInteger.ZERO._subTo(this,this); } // (protected) alternate constructor function bnpFromNumber(a,b,c) { - if("number" == typeof b) { + if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this._fromInt(1); else { - this._fromNumber(a,c); - if(!this.testBit(a-1)) // force MSB set + this._fromNumber(a,c); + if(!this.testBit(a-1)) // force MSB set this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); - if(this._isEven()) this._dAddOffset(1,0); // force odd - while(!this.isProbablePrime(b)) { + if(this._isEven()) this._dAddOffset(1,0); // force odd + while(!this.isProbablePrime(b)) { this._dAddOffset(2,0); if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this); - } + } } - } - else { + } + else { // new BigInteger(int,RNG) var x = [], t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) { + var i = this.t, r = []; + r[0] = this.s; + var p = this._DB-(i*this._DB)%8, d, k = 0; + if(i-- > 0) { if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p) - r[k++] = d|(this.s<<(this._DB-p)); + r[k++] = d|(this.s<<(this._DB-p)); while(i >= 0) { - if(p < 8) { + if(p < 8) { d = (this[i]&((1<>(p+=this._DB-8); - } - else { + } + else { d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this._DB; --i; } - } - if((d&0x80) != 0) d |= -256; - if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; - if(k > 0 || d != this.s) r[k++] = d; + } + if((d&0x80) != 0) d |= -256; + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; + if(k > 0 || d != this.s) r[k++] = d; } - } - return r; + } + return r; } function bnEquals(a) { return(this.compareTo(a)==0); } @@ -140,20 +140,20 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (protected) r = this op a (bitwise) function bnpBitwiseTo(a,op,r) { - var i, f, m = Math.min(a.t,this.t); - for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); - if(a.t < this.t) { + var i, f, m = Math.min(a.t,this.t); + for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); + if(a.t < this.t) { f = a.s&this._DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; - } - else { + } + else { f = this.s&this._DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; - } - r.s = op(this.s,a.s); - r._clamp(); + } + r.s = op(this.s,a.s); + r._clamp(); } // (public) this & a @@ -174,73 +174,73 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (public) ~this function bnNot() { - var r = nbi(); - for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i]; - r.t = this.t; - r.s = ~this.s; - return r; + var r = nbi(); + for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i]; + r.t = this.t; + r.s = ~this.s; + return r; } // (public) this << n function bnShiftLeft(n) { - var r = nbi(); - if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r); - return r; + var r = nbi(); + if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r); + return r; } // (public) this >> n function bnShiftRight(n) { - var r = nbi(); - if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r); - return r; + var r = nbi(); + if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r); + return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { - if(x == 0) return -1; - var r = 0; - if((x&0xffff) == 0) { x >>= 16; r += 16; } - if((x&0xff) == 0) { x >>= 8; r += 8; } - if((x&0xf) == 0) { x >>= 4; r += 4; } - if((x&3) == 0) { x >>= 2; r += 2; } - if((x&1) == 0) ++r; - return r; + if(x == 0) return -1; + var r = 0; + if((x&0xffff) == 0) { x >>= 16; r += 16; } + if((x&0xff) == 0) { x >>= 8; r += 8; } + if((x&0xf) == 0) { x >>= 4; r += 4; } + if((x&3) == 0) { x >>= 2; r += 2; } + if((x&1) == 0) ++r; + return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { - for(var i = 0; i < this.t; ++i) + for(var i = 0; i < this.t; ++i) if(this[i] != 0) return i*this._DB+lbit(this[i]); - if(this.s < 0) return this.t*this._DB; - return -1; + if(this.s < 0) return this.t*this._DB; + return -1; } // return number of 1 bits in x function cbit(x) { - var r = 0; - while(x != 0) { x &= x-1; ++r; } - return r; + var r = 0; + while(x != 0) { x &= x-1; ++r; } + return r; } // (public) return number of set bits function bnBitCount() { - var r = 0, x = this.s&this._DM; - for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); - return r; + var r = 0, x = this.s&this._DM; + for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); + return r; } // (public) true iff nth bit is set function bnTestBit(n) { - var j = Math.floor(n/this._DB); - if(j >= this.t) return(this.s!=0); - return((this[j]&(1<<(n%this._DB)))!=0); + var j = Math.floor(n/this._DB); + if(j >= this.t) return(this.s!=0); + return((this[j]&(1<<(n%this._DB)))!=0); } // (protected) this op (1<>= this._DB; - } - if(a.t < this.t) { + } + if(a.t < this.t) { c += a.s; while(i < this.t) { - c += this[i]; - r[i++] = c&this._DM; - c >>= this._DB; + c += this[i]; + r[i++] = c&this._DM; + c >>= this._DB; } c += this.s; - } - else { + } + else { c += this.s; while(i < a.t) { - c += a[i]; - r[i++] = c&this._DM; - c >>= this._DB; + c += a[i]; + r[i++] = c&this._DM; + c >>= this._DB; } c += a.s; - } - r.s = (c<0)?-1:0; - if(c > 0) r[i++] = c; - else if(c < -1) r[i++] = this._DV+c; - r.t = i; - r._clamp(); + } + r.s = (c<0)?-1:0; + if(c > 0) r[i++] = c; + else if(c < -1) r[i++] = this._DV+c; + r.t = i; + r._clamp(); } // (public) this + a @@ -302,27 +302,27 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (public) [this/a,this%a] function bnDivideAndRemainder(a) { - var q = nbi(), r = nbi(); - this._divRemTo(a,q,r); - return [q, r]; + var q = nbi(), r = nbi(); + this._divRemTo(a,q,r); + return [q, r]; } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { - this[this.t] = this.am(0,n-1,this,0,0,this.t); - ++this.t; - this._clamp(); + this[this.t] = this.am(0,n-1,this,0,0,this.t); + ++this.t; + this._clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n,w) { - while(this.t <= w) this[this.t++] = 0; - this[w] += n; - while(this[w] >= this._DV) { + while(this.t <= w) this[this.t++] = 0; + this[w] += n; + while(this[w] >= this._DV) { this[w] -= this._DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; - } + } } // A "null" reducer @@ -342,56 +342,56 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a,n,r) { - var i = Math.min(this.t+a.t,n); - r.s = 0; // assumes a,this >= 0 - r.t = i; - while(i > 0) r[--i] = 0; - var j; - for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); - for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); - r._clamp(); + var i = Math.min(this.t+a.t,n); + r.s = 0; // assumes a,this >= 0 + r.t = i; + while(i > 0) r[--i] = 0; + var j; + for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); + r._clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a,n,r) { - --n; - var i = r.t = this.t+a.t-n; - r.s = 0; // assumes a,this >= 0 - while(--i >= 0) r[i] = 0; - for(i = Math.max(n-this.t,0); i < a.t; ++i) + --n; + var i = r.t = this.t+a.t-n; + r.s = 0; // assumes a,this >= 0 + while(--i >= 0) r[i] = 0; + for(i = Math.max(n-this.t,0); i < a.t; ++i) r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); - r._clamp(); - r._drShiftTo(1,r); + r._clamp(); + r._drShiftTo(1,r); } // Barrett modular reduction function Barrett(m) { - // setup Barrett - this.r2 = nbi(); - this.q3 = nbi(); - BigInteger.ONE._dlShiftTo(2*m.t,this.r2); - this.mu = this.r2.divide(m); - this.m = m; + // setup Barrett + this.r2 = nbi(); + this.q3 = nbi(); + BigInteger.ONE._dlShiftTo(2*m.t,this.r2); + this.mu = this.r2.divide(m); + this.m = m; } function barrettConvert(x) { - if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); - else if(x.compareTo(this.m) < 0) return x; - else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); + else if(x.compareTo(this.m) < 0) return x; + else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { - x._drShiftTo(this.m.t-1,this.r2); - if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); } - this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3); - this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2); - while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1); - x._subTo(this.r2,x); - while(x.compareTo(this.m) >= 0) x._subTo(this.m,x); + x._drShiftTo(this.m.t-1,this.r2); + if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); } + this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3); + this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2); + while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1); + x._subTo(this.r2,x); + while(x.compareTo(this.m) >= 0) x._subTo(this.m,x); } // r = x^2 mod m; x != r @@ -408,141 +408,141 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (public) this^e % m (HAC 14.85) function bnModPow(e,m) { - var i = e.bitLength(), k, r = nbv(1), z; - if(i <= 0) return r; - else if(i < 18) k = 1; - else if(i < 48) k = 3; - else if(i < 144) k = 4; - else if(i < 768) k = 5; - else k = 6; - if(i < 8) + var i = e.bitLength(), k, r = nbv(1), z; + if(i <= 0) return r; + else if(i < 18) k = 1; + else if(i < 48) k = 3; + else if(i < 144) k = 4; + else if(i < 768) k = 5; + else k = 6; + if(i < 8) z = new Classic(m); - else if(m._isEven()) + else if(m._isEven()) z = new Barrett(m); - else + else z = new Montgomery(m); - // precomputation - var g = [], n = 3, k1 = k-1, km = (1< 1) { + // precomputation + var g = [], n = 3, k1 = k-1, km = (1< 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) { - g[n] = nbi(); - z.mulTo(g2,g[n-2],g[n]); - n += 2; + g[n] = nbi(); + z.mulTo(g2,g[n-2],g[n]); + n += 2; + } } - } - var j = e.t-1, w, is1 = true, r2 = nbi(), t; - i = nbits(e[j])-1; - while(j >= 0) { + var j = e.t-1, w, is1 = true, r2 = nbi(), t; + i = nbits(e[j])-1; + while(j >= 0) { if(i >= k1) w = (e[j]>>(i-k1))&km; else { - w = (e[j]&((1<<(i+1))-1))<<(k1-i); - if(j > 0) w |= e[j-1]>>(this._DB+i-k1); + w = (e[j]&((1<<(i+1))-1))<<(k1-i); + if(j > 0) w |= e[j-1]>>(this._DB+i-k1); } n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this._DB; --j; } if(is1) { // ret == 1, don't bother squaring or multiplying it - g[w]._copyTo(r); - is1 = false; + g[w]._copyTo(r); + is1 = false; } else { - while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } - if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } - z.mulTo(r2,g[w],r); + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } + z.mulTo(r2,g[w],r); } while(j >= 0 && (e[j]&(1< 0) { + var x = (this.s<0)?this.negate():this.clone(); + var y = (a.s<0)?a.negate():a.clone(); + if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } + var i = x.getLowestSetBit(), g = y.getLowestSetBit(); + if(g < 0) return x; + if(i < g) g = i; + if(g > 0) { x._rShiftTo(g,x); y._rShiftTo(g,y); - } - while(x.signum() > 0) { + } + while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y); if(x.compareTo(y) >= 0) { - x._subTo(y,x); - x._rShiftTo(1,x); + x._subTo(y,x); + x._rShiftTo(1,x); } else { - y._subTo(x,y); - y._rShiftTo(1,y); + y._subTo(x,y); + y._rShiftTo(1,y); } - } - if(g > 0) y._lShiftTo(g,y); - return y; + } + if(g > 0) y._lShiftTo(g,y); + return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { - if(n <= 0) return 0; - var d = this._DV%n, r = (this.s<0)?n-1:0; - if(this.t > 0) + if(n <= 0) return 0; + var d = this._DV%n, r = (this.s<0)?n-1:0; + if(this.t > 0) if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; - return r; + return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { - var ac = m._isEven(); - if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; - var u = m.clone(), v = this.clone(); - var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); - while(u.signum() != 0) { + var ac = m._isEven(); + if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; + var u = m.clone(), v = this.clone(); + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); + while(u.signum() != 0) { while(u._isEven()) { - u._rShiftTo(1,u); - if(ac) { + u._rShiftTo(1,u); + if(ac) { if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); } a._rShiftTo(1,a); - } - else if(!b._isEven()) b._subTo(m,b); - b._rShiftTo(1,b); + } + else if(!b._isEven()) b._subTo(m,b); + b._rShiftTo(1,b); } while(v._isEven()) { - v._rShiftTo(1,v); - if(ac) { + v._rShiftTo(1,v); + if(ac) { if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); } c._rShiftTo(1,c); - } - else if(!d._isEven()) d._subTo(m,d); - d._rShiftTo(1,d); + } + else if(!d._isEven()) d._subTo(m,d); + d._rShiftTo(1,d); } if(u.compareTo(v) >= 0) { - u._subTo(v,u); - if(ac) a._subTo(c,a); - b._subTo(d,b); + u._subTo(v,u); + if(ac) a._subTo(c,a); + b._subTo(d,b); } else { - v._subTo(u,v); - if(ac) c._subTo(a,c); - d._subTo(b,d); - } - } - if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; - if(d.compareTo(m) >= 0) return d.subtract(m); - if(d.signum() < 0) d._addTo(m,d); else return d; - if(d.signum() < 0) return d.add(m); else return d; + v._subTo(u,v); + if(ac) c._subTo(a,c); + d._subTo(b,d); + } + } + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; + if(d.compareTo(m) >= 0) return d.subtract(m); + if(d.signum() < 0) d._addTo(m,d); else return d; + if(d.signum() < 0) return d.add(m); else return d; } var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; @@ -550,45 +550,45 @@ define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { - var i, x = this.abs(); - if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { + var i, x = this.abs(); + if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i) - if(x[0] == lowprimes[i]) return true; + if(x[0] == lowprimes[i]) return true; return false; - } - if(x._isEven()) return false; - i = 1; - while(i < lowprimes.length) { + } + if(x._isEven()) return false; + i = 1; + while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x._modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; - } - return x._millerRabin(t); + } + return x._millerRabin(t); } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { - var n1 = this.subtract(BigInteger.ONE); - var k = n1.getLowestSetBit(); - if(k <= 0) return false; - var r = n1.shiftRight(k); - t = (t+1)>>1; - if(t > lowprimes.length) t = lowprimes.length; - var a = nbi(); - for(var i = 0; i < t; ++i) { + var n1 = this.subtract(BigInteger.ONE); + var k = n1.getLowestSetBit(); + if(k <= 0) return false; + var r = n1.shiftRight(k); + t = (t+1)>>1; + if(t > lowprimes.length) t = lowprimes.length; + var a = nbi(); + for(var i = 0; i < t; ++i) { a._fromInt(lowprimes[i]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { - var j = 1; - while(j++ < k && y.compareTo(n1) != 0) { + var j = 1; + while(j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; - } - if(y.compareTo(n1) != 0) return false; + } + if(y.compareTo(n1) != 0) return false; + } } - } - return true; + return true; } dojo.extend(BigInteger, { diff --git a/math/BigInteger.js b/math/BigInteger.js index 2eeed07fd1..85ecbac4e8 100644 --- a/math/BigInteger.js +++ b/math/BigInteger.js @@ -1,5 +1,5 @@ // AMD-ID "dojox/math/BigInteger" -define(["dojo", "dojox"], function(dojo, dojox) { +define(["dojo", "dojox", "dojo/has"], function(dojo, dojox, has) { dojo.getObject("math.BigInteger", true, dojox); dojo.experimental("dojox.math.BigInteger"); @@ -19,7 +19,7 @@ define(["dojo", "dojox"], function(dojo, dojox) { // (public) Constructor function BigInteger(a,b,c) { - if(a != null) + if(a != null) if("number" == typeof a) this._fromNumber(a,b,c); else if(!b && "string" != typeof a) this._fromString(a,256); else this._fromString(a,b); @@ -37,53 +37,56 @@ define(["dojo", "dojox"], function(dojo, dojox) { // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { - while(--n >= 0) { + while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; - } - return c; + } + return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { - var xl = x&0x7fff, xh = x>>15; - while(--n >= 0) { + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; - } - return c; + } + return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { - var xl = x&0x3fff, xh = x>>14; - while(--n >= 0) { + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; - } - return c; + } + return c; } - if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { - BigInteger.prototype.am = am2; - dbits = 30; + if(j_lm && has("ie")) { + BigInteger.prototype.am = am2; + dbits = 30; } - else if(j_lm && (navigator.appName != "Netscape")) { - BigInteger.prototype.am = am1; - dbits = 26; + // had another guard navigator.appName != "Netscape" + // this was removed since + // https://stackoverflow.com/questions/14573881/why-does-javascript-navigator-appname-return-netscape-for-safari-firefox-and-ch + else if(j_lm) { + BigInteger.prototype.am = am1; + dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 - BigInteger.prototype.am = am3; - dbits = 28; + BigInteger.prototype.am = am3; + dbits = 28; } var BI_FP = 52; @@ -101,24 +104,24 @@ define(["dojo", "dojox"], function(dojo, dojox) { function int2char(n) { return BI_RM.charAt(n); } function intAt(s,i) { - var c = BI_RC[s.charCodeAt(i)]; - return (c==null)?-1:c; + var c = BI_RC[s.charCodeAt(i)]; + return (c==null)?-1:c; } // (protected) copy this to r function bnpCopyTo(r) { - for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; - r.t = this.t; - r.s = this.s; + for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; + r.t = this.t; + r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { - this.t = 1; - this.s = (x<0)?-1:0; - if(x > 0) this[0] = x; - else if(x < -1) this[0] = x+_DV; - else this.t = 0; + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this[0] = x; + else if(x < -1) this[0] = x+_DV; + else this.t = 0; } // return bigint initialized to value @@ -126,77 +129,78 @@ define(["dojo", "dojox"], function(dojo, dojox) { // (protected) set from string and radix function bnpFromString(s,b) { - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 256) k = 8; // byte array - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else { this._fromRadix(s,b); return; } - this.t = 0; - this.s = 0; - var i = s.length, mi = false, sh = 0; - while(--i >= 0) { + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this._fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { - if(s.charAt(i) == "-") mi = true; - continue; + if(s.charAt(i) == "-") mi = true; + continue; } mi = false; if(sh == 0) - this[this.t++] = x; + this[this.t++] = x; else if(sh+k > this._DB) { - this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<>(this._DB-sh)); + this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<>(this._DB-sh)); } else - this[this.t-1] |= x<= this._DB) sh -= this._DB; - } - if(k == 8 && (s[0]&0x80) != 0) { + } + if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; + var c = this.s&this._DM; + while(this.t > 0 && this[this.t-1] == c) --this.t; + this.t = (this.t === 0) ? 1 : this.t; } // (public) return string representation in given radix function bnToString(b) { - if(this.s < 0) return "-"+this.negate().toString(b); - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else return this._toRadix(b); - var km = (1< 0) { + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this._toRadix(b); + var km = (1< 0) { if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { - if(p < k) { + if(p < k) { d = (this[i]&((1<>(p+=this._DB-k); - } - else { + } + else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this._DB; --i; } - } - if(d > 0) m = true; - if(m) r += int2char(d); + } + if(d > 0) m = true; + if(m) r += int2char(d); } - } - return m?r:"0"; + } + return m?r:"0"; } // (public) -this @@ -205,210 +209,208 @@ define(["dojo", "dojox"], function(dojo, dojox) { // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } - // (public) return + if this > a, - if this < a, 0 if equal + // (public) return +1 if this > a, -1 if this < a, 0 if equal function bnCompareTo(a) { - var r = this.s-a.s; - if(r) return r; - var i = this.t; - r = i-a.t; - if(r) return r; - while(--i >= 0) if((r = this[i] - a[i])) return r; - return 0; + if(this.s !== a.s) return this.s > a.s ? 1 : -1; // check sign + if(this.t !== a.t) return (this.s === 0) ? (this.t > a.t ? 1 : -1) : (this.t < a.t ? 1 : -1); // check size + var i = this.t; + while(--i >= 0) if(this[i] !== a[i]) return (this.s === 0) ? (this[i] > a[i] ? 1 : -1) : (this[i] > a[i] ? 1 : -1); // check indivitual bytes + return 0; } // returns bit length of the integer x function nbits(x) { - var r = 1, t; - if((t=x>>>16)) { x = t; r += 16; } - if((t=x>>8)) { x = t; r += 8; } - if((t=x>>4)) { x = t; r += 4; } - if((t=x>>2)) { x = t; r += 2; } - if((t=x>>1)) { x = t; r += 1; } - return r; + var r = 1, t; + if((t=x>>>16)) { x = t; r += 16; } + if((t=x>>8)) { x = t; r += 8; } + if((t=x>>4)) { x = t; r += 4; } + if((t=x>>2)) { x = t; r += 2; } + if((t=x>>1)) { x = t; r += 1; } + return r; } // (public) return the number of bits in "this" function bnBitLength() { - if(this.t <= 0) return 0; - return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); + if(this.t <= 0) return 0; + return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { - var i; - for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; - for(i = n-1; i >= 0; --i) r[i] = 0; - r.t = this.t+n; - r.s = this.s; + var i; + for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; + for(i = n-1; i >= 0; --i) r[i] = 0; + r.t = this.t+n; + r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { - for(var i = n; i < this.t; ++i) r[i-n] = this[i]; - r.t = Math.max(this.t-n,0); - r.s = this.s; + for(var i = n; i < this.t; ++i) r[i-n] = this[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { - var bs = n%this._DB; - var cbs = this._DB-bs; - var bm = (1<= 0; --i) { + var bs = n%this._DB; + var cbs = this._DB-bs; + var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; - r[ds] = c; - r.t = this.t+ds+1; - r.s = this.s; - r._clamp(); + } + for(i = ds-1; i >= 0; --i) r[i] = 0; + r[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r._clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { - r.s = this.s; - var ds = Math.floor(n/this._DB); - if(ds >= this.t) { r.t = 0; return; } - var bs = n%this._DB; - var cbs = this._DB-bs; - var bm = (1<>bs; - for(var i = ds+1; i < this.t; ++i) { + r.s = this.s; + var ds = Math.floor(n/this._DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%this._DB; + var cbs = this._DB-bs; + var bm = (1<>bs; + for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; - } - if(bs > 0) r[this.t-ds-1] |= (this.s&bm)< 0) r[this.t-ds-1] |= (this.s&bm)<>= this._DB; - } - if(a.t < this.t) { + } + if(a.t < this.t) { c -= a.s; while(i < this.t) { - c += this[i]; - r[i++] = c&this._DM; - c >>= this._DB; + c += this[i]; + r[i++] = c&this._DM; + c >>= this._DB; } c += this.s; - } - else { + } + else { c += this.s; while(i < a.t) { - c -= a[i]; - r[i++] = c&this._DM; - c >>= this._DB; + c -= a[i]; + r[i++] = c&this._DM; + c >>= this._DB; } c -= a.s; - } - r.s = (c<0)?-1:0; - if(c < -1) r[i++] = this._DV+c; - else if(c > 0) r[i++] = c; - r.t = i; - r._clamp(); + } + r.s = (c<0)?-1:0; + if(c < -1) r[i++] = this._DV+c; + else if(c > 0) r[i++] = c; + r.t = i; + r._clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { - var x = this.abs(), y = a.abs(); - var i = x.t; - r.t = i+y.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); - r.s = 0; - r._clamp(); - if(this.s != a.s) BigInteger.ZERO._subTo(r,r); + var x = this.abs(), y = a.abs(); + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); + r.s = 0; + r._clamp(); + if(this.s != a.s) BigInteger.ZERO._subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { - var x = this.abs(); - var i = r.t = 2*x.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < x.t-1; ++i) { + var x = this.abs(); + var i = r.t = 2*x.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) { - r[i+x.t] -= x._DV; - r[i+x.t+1] = 1; + r[i+x.t] -= x._DV; + r[i+x.t+1] = 1; + } } - } - if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); - r.s = 0; - r._clamp(); + if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); + r.s = 0; + r._clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { - var pm = m.abs(); - if(pm.t <= 0) return; - var pt = this.abs(); - if(pt.t < pm.t) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { if(q != null) q._fromInt(0); if(r != null) this._copyTo(r); return; - } - if(r == null) r = nbi(); - var y = nbi(), ts = this.s, ms = m.s; - var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus - if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } - else { pm._copyTo(y); pt._copyTo(r); } - var ys = y.t; - var y0 = y[ys-1]; - if(y0 == 0) return; - var yt = y0*(1<1)?y[ys-2]>>this._F2:0); - var d1 = this._FV/yt, d2 = (1<= 0) { + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus + if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } + else { pm._copyTo(y); pt._copyTo(r); } + var ys = y.t; + var y0 = y[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<1)?y[ys-2]>>this._F2:0); + var d1 = this._FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r._subTo(t,r); - } - BigInteger.ONE._dlShiftTo(ys,t); - t._subTo(y,y); // "negative" y so we can replace sub with am later - while(y.t < ys) y[y.t++] = 0; - while(--j >= 0) { + } + BigInteger.ONE._dlShiftTo(ys,t); + t._subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y[y.t++] = 0; + while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); - if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out - y._dlShiftTo(j,t); - r._subTo(t,r); - while(r[i] < --qd) r._subTo(t,r); + if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y._dlShiftTo(j,t); + r._subTo(t,r); + while(r[i] < --qd) r._subTo(t,r); } - } - if(q != null) { + } + if(q != null) { r._drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO._subTo(q,q); - } - r.t = ys; - r._clamp(); - if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder - if(ts < 0) BigInteger.ZERO._subTo(r,r); + } + r.t = ys; + r._clamp(); + if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO._subTo(r,r); } // (public) this mod a function bnMod(a) { - var r = nbi(); - this.abs()._divRemTo(a,null,r); - if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); - return r; + var r = nbi(); + this.abs()._divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); + return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { - if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); - else return x; + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; } function cRevert(x) { return x; } function cReduce(x) { x._divRemTo(this.m,null,x); } @@ -416,11 +418,11 @@ define(["dojo", "dojox"], function(dojo, dojox) { function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); } dojo.extend(Classic, { - convert: cConvert, - revert: cRevert, - reduce: cReduce, - mulTo: cMulTo, - sqrTo: cSqrTo + convert: cConvert, + revert: cRevert, + reduce: cReduce, + mulTo: cMulTo, + sqrTo: cSqrTo }); // (protected) return "-1/this % 2^DB"; useful for Mont. reduction @@ -434,52 +436,52 @@ define(["dojo", "dojox"], function(dojo, dojox) { // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { - if(this.t < 1) return 0; - var x = this[0]; - if((x&1) == 0) return 0; - var y = x&3; // y == 1/x mod 2^2 - y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 - y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 - y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 - // last step - calculate inverse mod DV directly; - // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints - y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits - // we really want the negative inverse, and -DV < y < DV - return (y>0)?this._DV-y:-y; + if(this.t < 1) return 0; + var x = this[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?this._DV-y:-y; } // Montgomery reduction function Montgomery(m) { - this.m = m; - this.mp = m._invDigit(); - this.mpl = this.mp&0x7fff; - this.mph = this.mp>>15; - this.um = (1<<(m._DB-15))-1; - this.mt2 = 2*m.t; + this.m = m; + this.mp = m._invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(m._DB-15))-1; + this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { - var r = nbi(); - x.abs()._dlShiftTo(this.m.t,r); - r._divRemTo(this.m,null,r); - if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); - return r; + var r = nbi(); + x.abs()._dlShiftTo(this.m.t,r); + r._divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); + return r; } // x/R mod m function montRevert(x) { - var r = nbi(); - x._copyTo(r); - this.reduce(r); - return r; + var r = nbi(); + x._copyTo(r); + this.reduce(r); + return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { - while(x.t <= this.mt2) // pad x so am has enough room later + while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; - for(var i = 0; i < this.m.t; ++i) { + for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM; @@ -488,10 +490,10 @@ define(["dojo", "dojox"], function(dojo, dojox) { x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; } - } - x._clamp(); - x._drShiftTo(this.m.t,x); - if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); + } + x._clamp(); + x._drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); } // r = "x^2/R mod m"; x != r @@ -501,11 +503,11 @@ define(["dojo", "dojox"], function(dojo, dojox) { function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } dojo.extend(Montgomery, { - convert: montConvert, - revert: montRevert, - reduce: montReduce, - mulTo: montMulTo, - sqrTo: montSqrTo + convert: montConvert, + revert: montRevert, + reduce: montReduce, + mulTo: montMulTo, + sqrTo: montSqrTo }); // (protected) true iff this is even @@ -513,65 +515,66 @@ define(["dojo", "dojox"], function(dojo, dojox) { // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { - if(e > 0xffffffff || e < 1) return BigInteger.ONE; - var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; - g._copyTo(r); - while(--i >= 0) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g._copyTo(r); + while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } - } - return z.revert(r); + } + return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { - var z; - if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); - return this._exp(e,z); + var z; + if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); + return this._exp(e,z); } dojo.extend(BigInteger, { // protected, not part of the official API - _DB: dbits, - _DM: (1 << dbits) - 1, - _DV: 1 << dbits, + _DB: dbits, + _DM: (1 << dbits) - 1, + _DV: 1 << dbits, - _FV: Math.pow(2, BI_FP), - _F1: BI_FP - dbits, - _F2: 2 * dbits-BI_FP, + _FV: Math.pow(2, BI_FP), + _F1: BI_FP - dbits, + _F2: 2 * dbits-BI_FP, // protected - _copyTo: bnpCopyTo, - _fromInt: bnpFromInt, - _fromString: bnpFromString, - _clamp: bnpClamp, - _dlShiftTo: bnpDLShiftTo, - _drShiftTo: bnpDRShiftTo, - _lShiftTo: bnpLShiftTo, - _rShiftTo: bnpRShiftTo, - _subTo: bnpSubTo, - _multiplyTo: bnpMultiplyTo, - _squareTo: bnpSquareTo, - _divRemTo: bnpDivRemTo, - _invDigit: bnpInvDigit, - _isEven: bnpIsEven, - _exp: bnpExp, + _copyTo: bnpCopyTo, + _fromInt: bnpFromInt, + _fromString: bnpFromString, + _clamp: bnpClamp, + _dlShiftTo: bnpDLShiftTo, + _drShiftTo: bnpDRShiftTo, + _lShiftTo: bnpLShiftTo, + _rShiftTo: bnpRShiftTo, + _subTo: bnpSubTo, + _multiplyTo: bnpMultiplyTo, + _squareTo: bnpSquareTo, + _divRemTo: bnpDivRemTo, + _invDigit: bnpInvDigit, + _isEven: bnpIsEven, + _exp: bnpExp, + _intAt: intAt, // public - toString: bnToString, - negate: bnNegate, - abs: bnAbs, - compareTo: bnCompareTo, - bitLength: bnBitLength, - mod: bnMod, - modPowInt: bnModPowInt + toString: bnToString, + negate: bnNegate, + abs: bnAbs, + compareTo: bnCompareTo, + bitLength: bnBitLength, + mod: bnMod, + modPowInt: bnModPowInt }); dojo._mixin(BigInteger, { // "constants" - ZERO: nbv(0), - ONE: nbv(1), + ZERO: nbv(0), + ONE: nbv(1), // internal functions _nbi: nbi, diff --git a/math/tests/BigInteger-ext.js b/math/tests/BigInteger-ext.js new file mode 100644 index 0000000000..968358d4dc --- /dev/null +++ b/math/tests/BigInteger-ext.js @@ -0,0 +1,112 @@ +dojo.provide("dojox.math.tests.BigInteger-ext"); + +dojo.require("dojox.math.BigInteger-ext"); + +tests.register("dojox.math.tests.BigInteger-ext", + [ + function sanity_check(t){ + var x = new dojox.math.BigInteger("abcd1234", 16), + y = new dojox.math.BigInteger("beef", 16), + z = x.mod(y); + t.is("b60c", z.toString(16)); + }, + function constructor_array(t){ + var x = new dojox.math.BigInteger([0, -1, -1, -1]); + + t.is(1, x.t) + }, + function constructor_base10(t){ + var x = new dojox.math.BigInteger("10", 10); + + t.is("10", x.toString(10)) + }, + function constructor_without_arg(t){ + var x = new dojox.math.BigInteger("100"); + + t.is("100", x.toString()) + }, + function minus_one_num_bytes(t){ + var x = new dojox.math.BigInteger("-1", 10); + + t.is(1, x.t) + }, + function compare_pl0(t){ + var x = new dojox.math.BigInteger("18446744073709551616"), + y = new dojox.math.BigInteger("18446744073709551616"), + z = x.compareTo(y); + + t.is("0", z); + }, + function compare_pl1(t){ + var x = new dojox.math.BigInteger("9223372036854775807"), + y = new dojox.math.BigInteger("9223372036854775808"), + z = x.compareTo(y); + + t.is("-1", z); + }, + function compare_pl2(t){ + var x = new dojox.math.BigInteger("2147483647"), + y = new dojox.math.BigInteger("65535"), + z = x.compareTo(y); + + t.is("1", z); + }, + function compare_pl3(t){ + var x = new dojox.math.BigInteger("65535"), + y = new dojox.math.BigInteger("2147483647"), + z = x.compareTo(y); + + t.is("-1", z); + }, + function compare_mi0(t){ + var x = new dojox.math.BigInteger("-9223372036854775809"), + y = new dojox.math.BigInteger("-9223372036854775809"), + z = x.compareTo(y); + + t.is("0", z); + }, + function compare_mi1(t){ + var x = new dojox.math.BigInteger("-9223372036854775808"), + y = new dojox.math.BigInteger("-9223372036854775809"), + z = x.compareTo(y); + + t.is("1", z); + }, + function compare_mi2(t){ + var x = new dojox.math.BigInteger("-32768"), + y = new dojox.math.BigInteger("-9223372036854775808"), + z = x.compareTo(y); + + t.is("1", z); + }, + function compare_mi3(t){ + var x = new dojox.math.BigInteger("-2147483648"), + y = new dojox.math.BigInteger("-32768"), + z = x.compareTo(y); + + t.is("-1", z); + }, + function compare_mi1_mi1(t){ + var x = new dojox.math.BigInteger("-1"), + y = new dojox.math.BigInteger("-1"), + z = x.compareTo(y); + + t.is("0", z); + }, + function compare_mi1_mi2(t){ + var x = new dojox.math.BigInteger("-1"), + y = new dojox.math.BigInteger("-2"), + z = x.compareTo(y); + + t.is("1", z); + } + , + function compare_mi2_mi1(t){ + var x = new dojox.math.BigInteger("-2"), + y = new dojox.math.BigInteger("-1"), + z = x.compareTo(y); + + t.is("-1", z); + } + ] +); \ No newline at end of file diff --git a/math/tests/main.js b/math/tests/main.js index a353e03611..3a7020a909 100644 --- a/math/tests/main.js +++ b/math/tests/main.js @@ -6,6 +6,7 @@ try{ dojo.require("dojox.math.tests.stats"); dojo.require("dojox.math.tests.round"); dojo.require("dojox.math.tests.BigInteger"); + dojo.require("dojox.math.tests.BigInteger-ext"); dojo.require("dojox.math.tests.random"); }catch(e){ doh.debug(e);