-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_buffer.py
88 lines (66 loc) · 2.71 KB
/
generate_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gym
import numpy as np
import torch
import argparse
import os
from utils import *
import DDPG
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--test_name", default="Original") # Specific Name for AlgoRun
parser.add_argument("--env_name", default="Pendulum-v0") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--buffer_size", default=1e5, type=float) # Max time steps to run environment for
parser.add_argument("--noise1", default=0.3, type=float) # Probability of selecting random action
parser.add_argument("--noise2", default=0.3, type=float) # Std of Gaussian exploration noise
args = parser.parse_args()
file_name = "%s_DDPG_%s_%s" % (args.test_name, args.env_name, str(args.seed))
buffer_name = "%s_Robust_%s_%s" % (args.test_name, args.env_name, str(args.seed))
print ("---------------------------------------")
print ("Settings: " + file_name)
print ("---------------------------------------")
if not os.path.exists("./buffers"):
os.makedirs("./buffers")
env = gym.make(args.env_name)
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = int(env.action_space.high[0])
# Initialize and load policy
policy = DDPG.DDPG(state_dim, action_dim, max_action)
policy.load(file_name, "./pytorch_models")
# Initialize buffer
replay_buffer = ReplayBuffer()
total_timesteps = 0
episode_num = 0
done = True
while total_timesteps < args.buffer_size:
if done:
if total_timesteps != 0:
print("Total T: %d Episode Num: %d Episode T: %d Reward: %f" % (total_timesteps, episode_num, episode_timesteps, episode_reward))
# Reset environment
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Add noise to actions
if np.random.uniform(0, 1) < args.noise1:
action = env.action_space.sample()
else:
action = policy.select_action(np.array(obs))
if args.noise2 != 0:
action = (action + np.random.normal(0, args.noise2, size=env.action_space.shape[0])).clip(env.action_space.low, env.action_space.high)
# Perform action
new_obs, reward, done, _ = env.step(action)
done_bool = 0 if episode_timesteps + 1 == env._max_episode_steps else float(done)
episode_reward += reward
# Store data in replay buffer
replay_buffer.add((obs, new_obs, action, reward, done_bool))
obs = new_obs
episode_timesteps += 1
total_timesteps += 1
# Save final buffer
replay_buffer.save(buffer_name)