-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBCQ.py
208 lines (145 loc) · 6.81 KB
/
BCQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, state, action):
a = F.relu(self.l1(torch.cat([state, action], 1)))
a = F.relu(self.l2(a))
a = 0.05 * self.max_action * torch.tanh(self.l3(a))
return (a + action).clamp(-self.max_action, self.max_action)
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
self.l4 = nn.Linear(state_dim + action_dim, 400)
self.l5 = nn.Linear(400, 300)
self.l6 = nn.Linear(300, 1)
def forward(self, state, action):
q1 = F.relu(self.l1(torch.cat([state, action], 1)))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(torch.cat([state, action], 1)))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def q1(self, state, action):
q1 = F.relu(self.l1(torch.cat([state, action], 1)))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
# Vanilla Variational Auto-Encoder
class VAE(nn.Module):
def __init__(self, state_dim, action_dim, latent_dim, max_action):
super(VAE, self).__init__()
self.e1 = nn.Linear(state_dim + action_dim, 750)
self.e2 = nn.Linear(750, 750)
self.mean = nn.Linear(750, latent_dim)
self.log_std = nn.Linear(750, latent_dim)
self.d1 = nn.Linear(state_dim + latent_dim, 750)
self.d2 = nn.Linear(750, 750)
self.d3 = nn.Linear(750, action_dim)
self.max_action = max_action
self.latent_dim = latent_dim
def forward(self, state, action):
z = F.relu(self.e1(torch.cat([state, action], 1)))
z = F.relu(self.e2(z))
mean = self.mean(z)
# Clamped for numerical stability
log_std = self.log_std(z).clamp(-4, 15)
std = torch.exp(log_std)
z = mean + std * torch.FloatTensor(np.random.normal(0, 1, size=(std.size()))).to(device)
u = self.decode(state, z)
return u, mean, std
def decode(self, state, z=None):
# When sampling from the VAE, the latent vector is clipped to [-0.5, 0.5]
if z is None:
z = torch.FloatTensor(np.random.normal(0, 1, size=(state.size(0), self.latent_dim))).to(device).clamp(-0.5, 0.5)
a = F.relu(self.d1(torch.cat([state, z], 1)))
a = F.relu(self.d2(a))
return self.max_action * torch.tanh(self.d3(a))
class BCQ(object):
def __init__(self, state_dim, action_dim, max_action):
latent_dim = action_dim * 2
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters())
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters())
self.vae = VAE(state_dim, action_dim, latent_dim, max_action).to(device)
self.vae_optimizer = torch.optim.Adam(self.vae.parameters())
self.max_action = max_action
self.action_dim = action_dim
def select_action(self, state):
with torch.no_grad():
state = torch.FloatTensor(state.reshape(1, -1)).repeat(10, 1).to(device)
action = self.actor(state, self.vae.decode(state))
q1 = self.critic.q1(state, action)
ind = q1.max(0)[1]
return action[ind].cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005):
for it in range(iterations):
# Sample replay buffer / batch
state_np, next_state_np, action, reward, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state_np).to(device)
action = torch.FloatTensor(action).to(device)
next_state = torch.FloatTensor(next_state_np).to(device)
reward = torch.FloatTensor(reward).to(device)
done = torch.FloatTensor(1 - done).to(device)
# Variational Auto-Encoder Training
recon, mean, std = self.vae(state, action)
recon_loss = F.mse_loss(recon, action)
KL_loss = -0.5 * (1 + torch.log(std.pow(2)) - mean.pow(2) - std.pow(2)).mean()
vae_loss = recon_loss + 0.5 * KL_loss
self.vae_optimizer.zero_grad()
vae_loss.backward()
self.vae_optimizer.step()
# Critic Training
with torch.no_grad():
# Duplicate state 10 times
state_rep = torch.FloatTensor(np.repeat(next_state_np, 10, axis=0)).to(device)
# Compute value of perturbed actions sampled from the VAE
target_Q1, target_Q2 = self.critic_target(state_rep, self.actor_target(state_rep, self.vae.decode(state_rep)))
# Soft Clipped Double Q-learning
target_Q = 0.75 * torch.min(target_Q1, target_Q2) + 0.25 * torch.max(target_Q1, target_Q2)
target_Q = target_Q.view(batch_size, -1).max(1)[0].view(-1, 1)
target_Q = reward + done * discount * target_Q
current_Q1, current_Q2 = self.critic(state, action)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Pertubation Model / Action Training
sampled_actions = self.vae.decode(state)
perturbed_actions = self.actor(state, sampled_actions)
# Update through DPG
actor_loss = -self.critic.q1(state, perturbed_actions).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update Target Networks
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
def save(self, filename, directory):
torch.save(self.actor.state_dict(), '%s/%s_actor.pth' % (directory, filename))
torch.save(self.critic.state_dict(), '%s/%s_critic.pth' % (directory, filename))
torch.save(self.vae.state_dict(), '%s/%s_vae.pth' % (directory, filename))
def load(self, filename, directory):
self.actor.load_state_dict(torch.load('%s/%s_actor.pth' % (directory, filename)))
self.critic.load_state_dict(torch.load('%s/%s_critic.pth' % (directory, filename)))
self.vae.load_state_dict(torch.load('%s/%s_vae.pth' % (directory, filename)))