-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
46 lines (30 loc) · 1.11 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import numpy as np
import sklearn
import sklearn.externals.joblib as joblib
import random
LoanStats3a=pd.read_csv('processed_test_datasetALL.csv')
X= LoanStats3a[['in_len', 'number', 'vout_num_origin', 'value_origin', 'out_len', 'out_value', 'out_number', 'is_coinbase']]
print(X.shape)
X = np.array(X)
# sc = joblib.load('standarsc')
# X_std = sc.transform(X)
# pca = joblib.load('geopca.m') #加载地形降维模型
# # 使用PCA对特征进行降维
# xGeoPCA = pca.transform(xGeoStd)
clf_best = joblib.load('RF_FIXED.m') #加载离线预测模型
print(clf_best.get_params())
y_predict = clf_best.predict(X)
df = LoanStats3a[['address']].copy()
df['label'] = y_predict
df.to_csv('submission_0524.csv',index=False)
print('done!')
# all prediction 'services' 3-17 84
# Random Forest_GridSearch_0.89-0421.m 4-21 89.42
# RF_10_50_8_0.88-0407.m 4-7 88.976
# XGBoost_GridSearch_0.89-421.m 4-21 88.8409
# Random Forest_GridSearch_0.8960.m 4-22 85.623
# Random Forest_GridSearch_0.8800.m 4-30 78.299
# Random Forest_GridSearch_0.9089.m 5-2 85.4487