-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster.py
268 lines (260 loc) · 12.8 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# encoding: utf-8
'''
@author: Lingcheng Dai
@contact: [email protected]
@file: cluster.py
@time: 2019/4/22 15:30
'''
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import multiprocessing
# btc_vin.csv记录了训练集和测试集地址相关的所有输入(inputs)记录,字段解释:
# tx_id:交易id
# tx_id_origin:引用的输出的交易id
# timestamp:时间戳
# number:交易的第几条输入
# vout_num_origin:引用的第几条输出
# address_origin:引用的输出的地址
# value_origin:引用的输出的原始金额
# btc_vout.csv记录了训练集和测试集地址相关的所有输出(outputs)记录,字段解释:
# tx_id:交易id
# value:金额
# address:地址
# timestamp:时间戳
# number:交易的第几条输出
# is_coinbase:是否是挖矿交易
# DataSet_DIR = r'./address_classfication_preliminary.jdcloud/test.csv'
DataSet_DIR = r'./address_classfication-dataset.jdcloud/train.csv'
BTC_VIN_DIR = r'./address_classfication-dataset.jdcloud/btc_vin.csv'
BTC_VOUT_DIR = r'./address_classfication-dataset.jdcloud/btc_vout.csv'
#
# def save_dataset1(x):
# print('Reading data...')
# train_df = pd.read_csv(DataSet_DIR)
# print('Loading train dataset completed!')
# train_vin_df = pd.read_csv(BTC_VIN_DIR, nrows=1000)
# print('Loading vin completed!')
# train_vout_df = pd.read_csv(BTC_VOUT_DIR, nrows=1000)
# # train_vout_df.to_csv('btc_vout1.csv')
# print("Loading vout completed!")
# ds = pd.DataFrame(columns=['address', 'label'])
# end = int(train_df.shape[0]*0.25)
# for i in range(end):
# if i%1000 != 0: print(1, 'iterations', i)
# address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
# ds = ds.append({'address':address, 'label':label}, ignore_index=True)
# tmp = train_vin_df[train_vin_df['address_origin'].isin([address])]
# if len(tmp)>0:
# for t in tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# out_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id])]
# if len(out_tmp) > 0:
# ds = ds.append({'address':out_tmp['address'], 'label':label}, ignore_index=True)
#
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id_origin])]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
# if i % 1000 == 0: train_df.to_csv('ds1.csv')
#
# def save_dataset2(x):
# print('Reading data...')
# train_df = pd.read_csv(DataSet_DIR)
# print('Loading train dataset completed!')
# train_vin_df = pd.read_csv(BTC_VIN_DIR, nrows=1000)
# print('Loading vin completed!')
# train_vout_df = pd.read_csv(BTC_VOUT_DIR, nrows=1000)
# # train_vout_df.to_csv('btc_vout1.csv')
# print("Loading vout completed!")
# ds = pd.DataFrame(columns=['address', 'label'])
# for i in range(int(train_df.shape[0]*0.25), int(train_df.shape[0]*0.5)):
# if i%1000 != 0: print('iterations', 2, i)
# address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
# ds = ds.append({'address':address, 'label':label}, ignore_index=True)
# tmp = train_vin_df[train_vin_df['address_origin'].isin([address])]
# if len(tmp)>0:
# for t in tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# out_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id])]
# if len(out_tmp) > 0:
# ds = ds.append({'address':out_tmp['address'], 'label':label}, ignore_index=True)
#
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id_origin])]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
# if i % 1000 == 0: train_df.to_csv('ds2.csv')
#
# def save_dataset3(x):
# print('Reading data...')
# train_df = pd.read_csv(DataSet_DIR)
# print('Loading train dataset completed!')
# train_vin_df = pd.read_csv(BTC_VIN_DIR, nrows=1000)
# print('Loading vin completed!')
# train_vout_df = pd.read_csv(BTC_VOUT_DIR, nrows=1000)
# # train_vout_df.to_csv('btc_vout1.csv')
# print("Loading vout completed!")
# ds = pd.DataFrame(columns=['address', 'label'])
# for i in range(int(train_df.shape[0]*0.5), int(train_df.shape[0]*0.75)):
# if i%1000 != 0: print('iterations', 3, i)
# address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
# ds = ds.append({'address':address, 'label':label}, ignore_index=True)
# tmp = train_vin_df[train_vin_df['address_origin'].isin([address])]
# if len(tmp)>0:
# for t in tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# out_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id])]
# if len(out_tmp) > 0:
# ds = ds.append({'address':out_tmp['address'], 'label':label}, ignore_index=True)
#
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id_origin])]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
# if i % 1000 == 0: train_df.to_csv('ds3.csv')
#
# def save_dataset4(x):
# print('Reading data...')
# train_df = pd.read_csv(DataSet_DIR)
# print('Loading train dataset completed!')
# train_vin_df = pd.read_csv(BTC_VIN_DIR, nrows=1000)
# print('Loading vin completed!')
# train_vout_df = pd.read_csv(BTC_VOUT_DIR, nrows=1000)
# # train_vout_df.to_csv('btc_vout1.csv')
# print("Loading vout completed!")
# ds = pd.DataFrame(columns=['address', 'label'])
# for i in range(int(train_df.shape[0]*0.75), train_df.shape[0]):
# if i%1000 != 0: print('iterations', 4, i)
# address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
# ds = ds.append({'address':address, 'label':label}, ignore_index=True)
# tmp = train_vin_df[train_vin_df['address_origin'].isin([address])]
# if len(tmp)>0:
# for t in tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# out_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id])]
# if len(out_tmp) > 0:
# ds = ds.append({'address':out_tmp['address'], 'label':label}, ignore_index=True)
#
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id'].isin([tx_id_origin])]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
# if i % 1000 == 0: train_df.to_csv('ds4.csv')
if __name__ == "__main__":
# pool = multiprocessing.Pool(processes=4)
# #
# # n_samples = 2000
# # if n_samples > 0:
# # print('Reading data...')
# # train_df = pd.read_csv(DataSet_DIR, nrows=n_samples)
# # print('Loading train dataset completed!')
# # train_vin_df = pd.read_csv(BTC_VIN_DIR, nrows=n_samples)
# # print('Loading vin completed!')
# # train_vout_df = pd.read_csv(BTC_VOUT_DIR, nrows=n_samples)
# # # train_vout_df.to_csv('btc_vout1.csv')
# # print("Loading vout completed!")
# # else:
# # print('Reading data...')
# # train_df = pd.read_csv(DataSet_DIR)
# # print('Loading train dataset completed!')
# # train_vin_df = pd.read_csv(BTC_VIN_DIR)
# # print('Loading vin completed!')
# # train_vout_df = pd.read_csv(BTC_VOUT_DIR)
# # # train_vout_df.to_csv('btc_vout1.csv')
# # print("Loading vout completed!")
#
# # print('train dataset shape', train_df.shape, train_df.head())
# # print('vin shape', train_vin_df.shape, train_vin_df.head())
# # print('vout shape', train_vout_df.shape, train_vout_df.head())
#
#
# pool.apply_async(save_dataset1, (1,))
# pool.apply_async(save_dataset2, (2,))
# pool.apply_async(save_dataset3, (3,))
# pool.apply_async(save_dataset4, (4,))
#
# pool.close()
# pool.join()
#
# for inputfile in ['ds1.csv','ds2.csv','ds3.csv','ds4.csv']:
# a = pd.read_csv(inputfile) # header=None表示原始文件数据没有列索引,这样的话read_csv会自动加上列索引
# a.to_csv('submission_0502.csv', mode='a', index=False,
# header=False) # header=0表示不保留列名,index=False表示不保留行索引,mode='a'表示附加方式写入,文件原有内容不会被清除
# print('done!')
print('Reading data...')
train_df = pd.read_csv(DataSet_DIR)
print('Loading train dataset completed!')
train_vin_df = pd.read_csv(BTC_VIN_DIR)
print('Loading vin completed!')
# train_vout_df = pd.read_csv(BTC_VOUT_DIR)
# train_vout_df.to_csv('btc_vout1.csv')
print("Loading vout completed!")
ds = pd.DataFrame(columns=['address', 'label'])
# for i in range(train_df.shape[0]):
# print('iterations', i)
# address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
# ds = ds.append({'address': address, 'label': label}, ignore_index=True)
# tmp = train_vin_df[train_vin_df['address_origin']==address]
# if len(tmp) > 0:
# for t in tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# out_tmp = train_vout_df[train_vout_df['tx_id']==tx_id]
# if len(out_tmp) > 0:
# ds = ds.append(out_tmp.loc[:, ['address', 'label']], ignore_index=True)
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id']==tx_id_origin]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
# if i % 100 == 0: train_df.to_csv('DATASET.csv', index=False)
for i in range(train_df.shape[0]):
if i%100 ==0: print('iterations', i)
address, label = train_df.loc[i, 'address'], train_df.loc[i, 'label']
ds = ds.append({'address': address, 'label': label}, ignore_index=True)
tmp = train_vin_df[train_vin_df['address_origin']==address]
if len(tmp) > 0:
for t in tmp.index:
tx_id = tmp.loc[t, 'tx_id']
in_txid = train_vin_df[train_vin_df['tx_id'] == tx_id]
if len(in_txid) > 0:
print('vin', in_txid)
in_txid = in_txid[['address_origin']]
in_txid.rename(columns={'address_origin': 'address'}, inplace=True)
in_txid['label'] = label
ds = ds.append(in_txid, ignore_index=True)
#
# out_tmp = train_vout_df[train_vout_df['address'] == address]
# if len(out_tmp) > 0:
# for t in out_tmp.index:
# tx_id = tmp.loc[t, 'tx_id']
# in_txid = train_vin_df[train_vin_df['tx_id'] == tx_id]
# if len(in_txid) > 0:
# print('vin', in_txid)
# in_txid = in_txid[in_txid['address_origin']]
# in_txid.rename(columns={'address_origin': 'address'}, inplace=True)
# in_txid['label'] = label
# ds = ds.append(in_txid, ignore_index=True)
#
#
# out_tmp = train_vout_df[train_vout_df['tx_id']==tx_id]
# if len(out_tmp) > 0:
# ds = ds.append(out_tmp.loc[:, ['address', 'label']], ignore_index=True)
# tx_id_origin = tmp.loc[t, 'tx_id_origin']
# out_origin_tmp = train_vout_df[train_vout_df['tx_id']==tx_id_origin]
# if len(out_origin_tmp) > 0:
# # print('out_origin', out_origin_tmp)
# out_origin_tmp.loc[:, 'label'] = label
# ds = ds.append(out_origin_tmp.loc[:, ['address', 'label']], ignore_index=True)
if i % 100 == 0:
ds = ds.drop_duplicates()
ds.to_csv('newDATASET.csv', index=False)