-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis.sty
110 lines (93 loc) · 3.45 KB
/
thesis.sty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
% !TEX root = Daniel-Miller-thesis.tex
% Operators.
\DeclareMathOperator{\Ad}{Ad} % Adjoint representation.
\DeclareMathOperator{\cdf}{cdf} % Cumulative distribution function.
\DeclareMathOperator{\D}{D} % Discrepancy.
\DeclareMathOperator{\End}{End} % Ring of endomorphisms.
\DeclareMathOperator{\Gal}{Gal} % Galois group.
\DeclareMathOperator{\GL}{GL} % General Linear Group.
\DeclareMathOperator{\h}{H} % (Group) cohomology.
\DeclareMathOperator{\im}{im} % Image of a map.
\DeclareMathOperator{\Li}{Li} % (Eulerian) logarithmic integral.
\DeclareMathOperator{\Lie}{Lie} % Lie algebra
\DeclareMathOperator{\N}{N} % Norm map.
\DeclareMathOperator{\ord}{ord} % Order of a zero.
\DeclareMathOperator{\R}{R} % restriction of scalars
\DeclareMathOperator{\rk}{rk} % Rank of a group.
\DeclareMathOperator{\sgn}{sgn} % Sign of a real number.
\DeclareMathOperator{\SO}{SO} % Special orthogonal group.
\DeclareMathOperator{\SU}{SU} % Special unitary group.
\DeclareMathOperator{\sym}{sym} % Symmetric power.
\DeclareMathOperator{\tr}{tr} % Trace.
\DeclareMathOperator{\X}{X} % Group of characters of a torus.
\DeclareMathOperator{\Var}{Var} % Variation of a function.
% Bold letters.
\newcommand{\ba}{{\boldsymbol a}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\balpha}{{\boldsymbol\alpha}}
\newcommand{\bmu}{{\boldsymbol\mu}}
\newcommand{\bepsilon}{{\boldsymbol\epsilon}}
\newcommand{\bC}{\mathbf{C}}
\newcommand{\bF}{\mathbf{F}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bQ}{\mathbf{Q}}
\newcommand{\bR}{\mathbf{R}}
\newcommand{\brho}{{\boldsymbol\rho}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\btheta}{{\boldsymbol\theta}}
\newcommand{\bv}{{\boldsymbol v}}
\newcommand{\bx}{{\boldsymbol x}}
\newcommand{\bvx}{\vec{\boldsymbol x}}
\newcommand{\by}{{\boldsymbol y}}
\newcommand{\bz}{{\boldsymbol z}}
\newcommand{\bZ}{\mathbf{Z}}
\newcommand{\dQ}{\mathbf{Q}}
% Fraktur letters.
\newcommand{\fa}{\mathfrak{a}}
\newcommand{\fp}{\mathfrak{p}}
\newcommand{\ft}{\mathfrak{t}}
% Vectors.
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vinfty}{\vec{\infty}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vt}{\vec{t}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
% Miscellaneous symbols.
\newcommand{\dd}{\mathrm{d}} % Differential.
\newcommand{\frob}{\mathrm{fr}} % Frobenius.
\newcommand{\Gm}{\mathbf{G}_\mathrm{m}} % Multiplicative group.
\newcommand{\nr}{\mathrm{nr}} % Non-ramified cohomology.
\newcommand{\pow}[1]{\llbracket#1\rrbracket} % Ring of power series.
\newcommand{\ram}{\mathrm{ram}} % Set of ramified primes.
\newcommand{\ST}{\mathrm{ST}} % Sato--Tate group.
\newcommand{\tate}{\mathrm{T}} % Tate module
% Matrices.
\newcommand{\smat}[4]{
\left(\begin{smallmatrix}
#1 & #2 \\
#3 & #4
\end{smallmatrix}\right)
}
\newcommand{\svec}[2]{
\left(\begin{smallmatrix}
#1 \\
#2
\end{smallmatrix} \right)
}
% Tate--Shafarevich groups.
\DeclareFontFamily{U}{wncy}{}
\DeclareFontShape{U}{wncy}{m}{n}{<->wncyr10}{}
\DeclareSymbolFont{mcy}{U}{wncy}{m}{n}
\DeclareMathSymbol{\Sha}{\mathord}{mcy}{"58}
% Environments.
\newtheorem{conjecture}[subsection]{Conjecture}
\newtheorem{corollary}[subsection]{Corollary}
\newtheorem{lemma}[subsection]{Lemma}
\newtheorem{theorem}[subsection]{Theorem}
\theoremstyle{definition}
\newtheorem{definition}[subsection]{Definition}