-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDQN.py
211 lines (146 loc) · 6.39 KB
/
DDQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import random
import gym
import numpy as np
import collections
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
# import rl_utils
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
class ReplayBuffer:
def __init__(self, bufferSize):
self.buffer = collections.deque(maxlen=bufferSize)
def add(self, state, action, reward, nextstate, done):
self.buffer.append((state, action, reward, nextstate, done))
def sample(self, batch_size):
transitions = random.sample(self.buffer, batch_size)
states, actions, rewards, nextstates, dones = zip(*transitions)
return np.array(states), actions, rewards, np.array(nextstates), dones
def size(self):
return len(self.buffer)
class Qnet(nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(Qnet, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
return self.fc2(F.relu(self.fc1(x)))
class DQN:
def __init__(self, state_dim, hidden_dim, action_dim, device, gamma, epsilon, learning_rate, update_num):
self.qnet = Qnet(state_dim, hidden_dim, action_dim).to(device)
self.target_qnet = Qnet(state_dim, hidden_dim, action_dim).to(device)
self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=learning_rate)
# self.target_qnet.load_state_dict(self.qnet.state_dict())
self.device = device
self.gamma = gamma
self.epsilon = epsilon
self.count = 0
self.action_dim = action_dim
self.update_num = update_num
def take_action(self, state):
if np.random.random() < self.epsilon:
action = np.random.randint(self.action_dim)
else:
state = torch.tensor([state], dtype=torch.float).to(self.device)
action = self.qnet(state).argmax().item()
return action
def max_q_value(self, state):
c = self.qnet(torch.tensor([state], dtype=torch.float).to(self.device)).max(1).values.item()
a = self.qnet(torch.tensor([state], dtype=torch.float).to(self.device)).max().item()
return c
def update(self, transitions):
states = torch.tensor(transitions['states'], dtype=torch.float).to(self.device)
actions = torch.tensor(transitions['actions']).view(-1, 1).to(self.device)
rewards = torch.tensor(transitions['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transitions['nextstates'], dtype=torch.float).to(self.device)
dones = torch.tensor(transitions['dones'], dtype=torch.float).view(-1, 1).to(self.device)
q_values = self.qnet(states).gather(1, actions)
# next_q_values = self.qnet(next_states).max(1)[0].view(-1, 1)
# next_q_values = self.target_qnet(next_states).max(1)[0].view(-1, 1)
#DDQN
a_star = self.qnet(next_states).max(1)[1].view(-1, 1)
next_q_values = self.target_qnet(next_states).gather(1, a_star)
loss = torch.mean(F.mse_loss(q_values, rewards + self.gamma * next_q_values * (1 - dones)))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.count % self.update_num == 0:
self.target_qnet.load_state_dict(self.qnet.state_dict())
self.count += 1
lr = 2e-3
batch_size = 64
buffer_size = 10000
hidden_dim = 128
gamma = 0.98
epsilon = 0.01
update_num = 10
num_episodes = 500
minimal_size = 500
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
env_name = 'Pendulum-v0'
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = 11
replay_buffer = ReplayBuffer(buffer_size)
agent = DQN(state_dim, hidden_dim, action_dim, device, gamma, epsilon, lr, update_num)
def dis_to_con(discrete_action, env, action_dim):
action_lowbound = env.action_space.low[0] # 连续动作的最小值
action_upbound = env.action_space.high[0] # 连续动作的最大值
return action_lowbound + (discrete_action /
(action_dim - 1)) * (action_upbound -
action_lowbound)
return_list = []
max_q_value_list = []
max_q_value = 0
for i in range(10):
with tqdm(total=num_episodes // 10, desc='Interation %d' % i) as par:
for i_episodes in range(num_episodes // 10):
episode_return = 0
state = env.reset()
done = False
while not done:
action = agent.take_action(state)
# env.render()
# max_q_value = agent.max_q_value(
# state) * 0.005 + max_q_value * 0.995 # 平滑处理
max_q_value = agent.max_q_value(state)
max_q_value_list.append(max_q_value) # 保存每个状态的最大Q值
action_continuous = dis_to_con(action, env,
agent.action_dim)
next_state, reward, done, _ = env.step([action_continuous])
# next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, reward, next_state, done)
episode_return += reward
state = next_state
if replay_buffer.size() > minimal_size:
bs, ba, br, bns, bd = replay_buffer.sample(batch_size)
transitions = {'states': bs,
'actions': ba,
'rewards': br,
'nextstates': bns,
'dones': bd}
agent.update(transitions)
return_list.append(episode_return)
if (i_episodes + 1) % 10 == 0:
par.set_postfix({'Episode': '%d' % (i_episodes + 1),
'Return': '%.3f' % np.mean(return_list[-10:])})
par.update(1)
episode_list = list(range(len(return_list)))
plt.plot(episode_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title(f'DDQN on {env_name}')
plt.show()
frames_list = list(range(len(max_q_value_list)))
plt.plot(frames_list, max_q_value_list)
plt.axhline(y=0, c='red', ls='--')
plt.axhline(y=10, c='blue', ls='--')
plt.xlabel('state')
plt.ylabel('max Q value')
plt.show()