-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
151 lines (131 loc) · 5.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import pathlib
import datetime
import os
import shutil
try:
import matplotlib
matplotlib.use('Agg')
except ImportError:
pass
import chainer
from chainer.training import extensions
from utils import Preprocess
from utils import ExponentialMovingAverage
from WaveNet import WaveNet
from net import UpsampleNet, EncoderDecoderModel
import params
# use CPU or GPU
parser = argparse.ArgumentParser()
parser.add_argument('--gpus', '-g', type=int, default=[-1], nargs='+',
help='GPU IDs (negative value indicates CPU)')
parser.add_argument('--process', '-p', type=int, default=1,
help='Number of parallel processes')
parser.add_argument('--prefetch', '-f', type=int, default=1,
help='Number of prefetch samples')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
args = parser.parse_args()
if args.gpus != [-1]:
chainer.cuda.set_max_workspace_size(2 * 512 * 1024 * 1024)
chainer.global_config.autotune = True
# get paths
if params.dataset_type == 'VCTK':
files = sorted([
str(path) for path in pathlib.Path(params.root).glob('wav48/*/*.wav')])
elif params.dataset_type == 'ARCTIC':
files = sorted([
str(path) for path in pathlib.Path(params.root).glob('*/wav/*.wav')])
elif params.dataset_type == 'vs':
files = sorted([
str(path) for path in pathlib.Path(params.root).glob('*/*.wav')])
elif params.dataset_type == 'LJSpeech':
files = sorted([
str(path) for path in pathlib.Path(params.root).glob('wavs/*.wav')])
preprocess = Preprocess(
params.sr, params.n_fft, params.hop_length, params.n_mels, params.top_db,
params.input_dim, params.quantize, params.length, params.use_logistic)
dataset = chainer.datasets.TransformDataset(files, preprocess)
train, valid = chainer.datasets.split_dataset_random(
dataset, int(len(dataset) * 0.9), params.split_seed)
# make directory of results
result = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
os.mkdir(result)
shutil.copy(__file__, os.path.join(result, __file__))
shutil.copy('utils.py', os.path.join(result, 'utils.py'))
shutil.copy('params.py', os.path.join(result, 'params.py'))
shutil.copy('generate.py', os.path.join(result, 'generate.py'))
shutil.copy('net.py', os.path.join(result, 'net.py'))
shutil.copytree('WaveNet', os.path.join(result, 'WaveNet'))
# Model
encoder = UpsampleNet(params.channels, params.upsample_factors)
wavenet = WaveNet(
params.n_loop, params.n_layer, params.filter_size, params.input_dim,
params.residual_channels, params.dilated_channels, params.skip_channels,
params.quantize, params.use_logistic, params.n_mixture,
params.log_scale_min,
params.condition_dim, params.dropout_zero_rate)
if params.ema_mu < 1:
decoder = ExponentialMovingAverage(wavenet, params.ema_mu)
else:
decoder = wavenet
if params.use_logistic:
loss_fun = wavenet.calculate_logistic_loss
acc_fun = None
else:
loss_fun = chainer.functions.softmax_cross_entropy
acc_fun = chainer.functions.accuracy
model = EncoderDecoderModel(encoder, decoder, loss_fun, acc_fun)
# Optimizer
optimizer = chainer.optimizers.Adam(params.lr / len(args.gpus))
optimizer.setup(model)
# Iterator
if args.process * args.prefetch > 1:
train_iter = chainer.iterators.MultiprocessIterator(
train, params.batchsize,
n_processes=args.process, n_prefetch=args.prefetch)
valid_iter = chainer.iterators.MultiprocessIterator(
valid, params.batchsize // len(args.gpus), repeat=False, shuffle=False,
n_processes=args.process, n_prefetch=args.prefetch)
else:
train_iter = chainer.iterators.SerialIterator(train, params.batchsize)
valid_iter = chainer.iterators.SerialIterator(
valid, params.batchsize // len(args.gpus), repeat=False, shuffle=False)
# Updater
if args.gpus == [-1]:
updater = chainer.training.StandardUpdater(train_iter, optimizer)
else:
chainer.cuda.get_device_from_id(args.gpus[0]).use()
names = ['main'] + list(range(len(args.gpus) - 1))
devices = {str(name): gpu for name, gpu in zip(names, args.gpus)}
updater = chainer.training.ParallelUpdater(
train_iter, optimizer, devices=devices)
# Trainer
trainer = chainer.training.Trainer(updater, params.trigger, out=result)
# Extensions
trainer.extend(extensions.Evaluator(valid_iter, model, device=args.gpus[0]),
trigger=params.evaluate_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=params.snapshot_interval)
trainer.extend(extensions.LogReport(trigger=params.report_interval))
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'main/loss', 'main/accuracy',
'validation/main/loss', 'validation/main/accuracy']),
trigger=params.report_interval)
trainer.extend(extensions.PlotReport(
['main/loss', 'validation/main/loss'],
'iteration', file_name='loss.png', trigger=params.report_interval))
trainer.extend(extensions.PlotReport(
['main/accuracy', 'validation/main/accuracy'],
'iteration', file_name='accuracy.png', trigger=params.report_interval))
trainer.extend(extensions.ProgressBar(update_interval=1))
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
# run
print('GPUs: {}'.format(*args.gpus))
print('# train: {}'.format(len(train)))
print('# valid: {}'.format(len(valid)))
print('# Minibatch-size: {}'.format(params.batchsize))
print('# {}: {}'.format(params.trigger[1], params.trigger[0]))
print('')
trainer.run()