diff --git a/readme.md b/readme.md
index fad499e..6280df5 100644
--- a/readme.md
+++ b/readme.md
@@ -5,32 +5,50 @@
-# Dexter
+# Dexter
-Dexter is a set of mature LLM tools used in production at [Dexa](https://dexa.ai), with a focus on real-world RAG ([Retrieval Augmented Generation](https://arxiv.org/abs/2005.11401)).
+Dexter is a powerful TypeScript library for working with Large Language Models (LLMs), with a focus on real-world Retrieval-Augmented Generation (RAG) applications. It provides a set of tools and utilities to interact with various AI models, manage caching, handle embeddings, and implement AI functions.
-_If you're a TypeScript AI engineer, check it out!_ 😊
+## Features
+
+- **Comprehensive Model Support**: Implementations for Chat, Completion, Embedding, and Sparse Vector models, with efficient OpenAI API integration via `openai-fetch`.
+
+- **Advanced AI Function Utilities**: Tools for creating and managing AI functions, including `createAIFunction`, `createAIExtractFunction`, and `createAIRunner`, with Zod integration for schema validation.
+
+- **Flexible Caching and Tokenization**: Built-in caching system with custom cache support, and advanced tokenization based on `tiktoken` for accurate token management.
+
+- **Robust Observability and Control**: Customizable telemetry system, comprehensive event hooks, and specialized error handling for enhanced monitoring and control.
-- [Features](#features)
-- [Install](#install)
+- **Performance Optimization**: Built-in support for batching, throttling, and streaming, optimized for handling large-scale operations and real-time responses.
+
+- **TypeScript-First and Environment Flexible**: Fully typed for excellent developer experience, with minimal dependencies and compatibility across Node.js 18+, Deno, Cloudflare Workers, and Vercel edge functions.
+
+## Table of Contents
+
+- [Installation](#installation)
- [Usage](#usage)
- [Examples](#examples)
+- [Repository Structure](#repository-structure)
+- [API Reference](#api-reference)
+ - [ChatModel](#chatmodel)
+ - [CompletionModel](#completionmodel)
+ - [EmbeddingModel](#embeddingmodel)
+ - [SparseVectorModel](#sparsevectormodel)
+ - [AI Functions](#ai-functions)
+ - [Utilities](#utilities)
+- [Advanced Topics](#advanced-topics)
+ - [OpenAI Client (openai-fetch)](#openai-client-openai-fetch)
+ - [Message Types and MsgUtil](#message-types-and-msgutil)
+ - [Telemetry](#telemetry)
- [Caching](#caching)
- - [Redis Caching](#redis-caching)
- - [AI Function](#ai-function)
- - [AI Runner](#ai-runner)
+ - [Tokenization](#tokenization)
+ - [Model Event Hooks](#model-event-hooks)
+- [Contributing](#contributing)
- [License](#license)
-## Features
+## Installation
-- extremely fast and minimal
-- handles caching, throttling, and batching for ingesting large datasets
-- optional hybrid search w/ SPLADE embeddings
-- minimal TS package w/ full typing
-- uses `fetch` everywhere
-- supports Node.js 18+, Deno, Cloudflare Workers, Vercel edge functions, etc
-
-## Install
+To install Dexter, use your preferred package manager:
```bash
npm install @dexaai/dexter
@@ -40,46 +58,450 @@ This package requires `node >= 18` or an environment with `fetch` support.
This package exports [ESM](https://gist.github.com/sindresorhus/a39789f98801d908bbc7ff3ecc99d99c). If your project uses CommonJS, consider switching to ESM or use the [dynamic `import()`](https://v8.dev/features/dynamic-import) function.
+## Usage
+
+Here's a basic example of how to use the ChatModel:
+
+```typescript
+import { ChatModel } from '@dexaai/dexter';
+
+const chatModel = new ChatModel({
+ params: { model: 'gpt-3.5-turbo' },
+});
+
+async function main() {
+ const response = await chatModel.run({
+ messages: [{ role: 'user', content: 'Tell me a short joke' }],
+ });
+ console.log(response.message.content);
+}
+
+main().catch(console.error);
+```
+
## Examples
-To run the included examples, clone this repo, run `pnpm install`, set up your `.env` file, and then run an example file using `tsx`.
+### Chat Completion with Streaming
-Environment variables required to run the examples:
+```typescript
+import { ChatModel, MsgUtil } from '@dexaai/dexter';
-- `OPENAI_API_KEY` - OpenAI API key
-- `SPLADE_SERVICE_URL` - optional; only used for the chatbot hybrid search example
+const chatModel = new ChatModel({
+ params: { model: 'gpt-4' },
+});
-### Redis Caching
+async function main() {
+ const response = await chatModel.run({
+ messages: [MsgUtil.user('Write a short story about a robot learning to love')],
+ handleUpdate: (chunk) => {
+ process.stdout.write(chunk);
+ },
+ });
+ console.log('\n\nFull response:', response.message.content);
+}
-This example requires a valid `REDIS_URL` env var.
+main().catch(console.error);
+```
-```bash
-npx tsx examples/caching-redis.ts
+### Using AI Functions
+
+```typescript
+import { ChatModel, createAIFunction, MsgUtil } from '@dexaai/dexter';
+import { z } from 'zod';
+
+const getWeather = createAIFunction(
+ {
+ name: 'get_weather',
+ description: 'Gets the weather for a given location',
+ argsSchema: z.object({
+ location: z.string().describe('The city and state e.g. San Francisco, CA'),
+ unit: z.enum(['c', 'f']).optional().default('f').describe('The unit of temperature to use'),
+ }),
+ },
+ async ({ location, unit }) => {
+ // Simulate API call
+ await new Promise((resolve) => setTimeout(resolve, 500));
+ return {
+ location,
+ unit,
+ temperature: Math.floor(Math.random() * 30) + 10,
+ condition: ['sunny', 'cloudy', 'rainy'][Math.floor(Math.random() * 3)],
+ };
+ }
+);
+
+const chatModel = new ChatModel({
+ params: {
+ model: 'gpt-4',
+ tools: [{ type: 'function', function: getWeather.spec }],
+ },
+});
+
+async function main() {
+ const response = await chatModel.run({
+ messages: [MsgUtil.user('What\'s the weather like in New York?')],
+ });
+ console.log(response.message);
+}
+
+main().catch(console.error);
```
-[source](./examples/caching-redis.ts)
+### Embedding Generation
-### AI Function
+```typescript
+import { EmbeddingModel } from '@dexaai/dexter';
-This example shows how to use `createAIFunction` to handle `function` and `tool_calls` with the OpenAI chat completions API and Zod.
+const embeddingModel = new EmbeddingModel({
+ params: { model: 'text-embedding-ada-002' },
+});
-```bash
-npx tsx examples/ai-function.ts
+async function main() {
+ const response = await embeddingModel.run({
+ input: ['Hello, world!', 'How are you?'],
+ });
+ console.log(response.embeddings);
+}
+
+main().catch(console.error);
```
-[source](./examples/ai-function.ts)
+## Repository Structure
-### AI Runner
+The Dexter library is organized into the following main directories:
-This example shows how to use `createAIRunner` to easily invoke a chain of OpenAI chat completion calls, resolving tool / function calls, retrying when necessary, and optionally validating the resulting output via Zod.
+- `src/`: Contains the source code for the library
+ - `model/`: Core model implementations and utilities
+ - `ai-function/`: AI function creation and handling
+- `examples/`: Contains example scripts demonstrating library usage
+- `dist/`: Contains the compiled JavaScript output (generated after build)
-Note that `createAIRunner` takes in a `functions` array of `AIFunction` objects created by `createAIFunction`, as the two utility functions are meant to used together.
+Key files:
-```bash
-npx tsx examples/ai-runner.ts
+- `src/model/chat.ts`: Implementation of the ChatModel
+- `src/model/completion.ts`: Implementation of the CompletionModel
+- `src/model/embedding.ts`: Implementation of the EmbeddingModel
+- `src/model/sparse-vector.ts`: Implementation of the SparseVectorModel
+- `src/ai-function/ai-function.ts`: AI function creation utilities
+- `src/model/utils/`: Various utility functions and helpers
+
+## API Reference
+
+### ChatModel
+
+The `ChatModel` class is used for interacting with chat-based language models.
+
+#### Constructor
+
+```typescript
+new ChatModel(args?: ChatModelArgs)
```
-[source](./examples/ai-runner.ts)
+- `args`: Optional configuration object
+ - `params`: Model parameters (e.g., `model`, `temperature`)
+ - `client`: Custom OpenAI client (optional)
+ - `cache`: Cache implementation (optional)
+ - `context`: Custom context object (optional)
+ - `events`: Event handlers (optional)
+ - `debug`: Enable debug logging (optional)
+
+#### Methods
+
+- `run(params: ChatModelRun, context?: CustomCtx): Promise`
+ - Executes the chat model with the given parameters and context
+- `extend(args?: PartialChatModelArgs): ChatModel`
+ - Creates a new instance of the model with modified configuration
+
+### CompletionModel
+
+The `CompletionModel` class is used for text completion tasks.
+
+#### Constructor
+
+```typescript
+new CompletionModel(args?: CompletionModelArgs)
+```
+
+- `args`: Optional configuration object (similar to ChatModel)
+
+#### Methods
+
+- `run(params: CompletionModelRun, context?: CustomCtx): Promise`
+ - Executes the completion model with the given parameters and context
+- `extend(args?: PartialCompletionModelArgs): CompletionModel`
+ - Creates a new instance of the model with modified configuration
+
+### EmbeddingModel
+
+The `EmbeddingModel` class is used for generating embeddings from text.
+
+#### Constructor
+
+```typescript
+new EmbeddingModel(args?: EmbeddingModelArgs)
+```
+
+- `args`: Optional configuration object (similar to ChatModel)
+
+#### Methods
+
+- `run(params: EmbeddingModelRun, context?: CustomCtx): Promise`
+ - Generates embeddings for the given input texts
+- `extend(args?: PartialEmbeddingModelArgs): EmbeddingModel`
+ - Creates a new instance of the model with modified configuration
+
+### SparseVectorModel
+
+The `SparseVectorModel` class is used for generating sparse vector representations.
+
+#### Constructor
+
+```typescript
+new SparseVectorModel(args: SparseVectorModelArgs)
+```
+
+- `args`: Configuration object
+ - `serviceUrl`: URL of the SPLADE service (required)
+ - Other options similar to ChatModel
+
+#### Methods
+
+- `run(params: SparseVectorModelRun, context?: CustomCtx): Promise`
+ - Generates sparse vector representations for the given input texts
+- `extend(args?: PartialSparseVectorModelArgs): SparseVectorModel`
+ - Creates a new instance of the model with modified configuration
+
+### AI Functions
+
+#### createAIFunction
+
+Creates a function meant to be used with OpenAI tool or function calling.
+
+```typescript
+createAIFunction, Return>(
+ spec: {
+ name: string;
+ description?: string;
+ argsSchema: Schema;
+ },
+ implementation: (params: z.infer) => Promise
+): AIFunction
+```
+
+#### createAIExtractFunction
+
+Creates a function to extract structured data from text using OpenAI function calling.
+
+```typescript
+createAIExtractFunction>(
+ {
+ chatModel: Model.Chat.Model;
+ name: string;
+ description?: string;
+ schema: Schema;
+ maxRetries?: number;
+ systemMessage?: string;
+ functionCallConcurrency?: number;
+ },
+ customExtractImplementation?: (params: z.infer) => z.infer | Promise>
+): ExtractFunction
+```
+
+#### createAIRunner
+
+Creates a function to run a chat model in a loop, handling parsing, running, and inserting responses for function & tool call messages.
+
+```typescript
+createAIRunner(args: {
+ chatModel: Model.Chat.Model;
+ functions?: AIFunction[];
+ shouldBreakLoop?: (msg: Msg) => boolean;
+ maxIterations?: number;
+ functionCallConcurrency?: number;
+ validateContent?: (content: string | null) => Content | Promise;
+ mode?: Runner.Mode;
+ systemMessage?: string;
+ onRetriableError?: (error: Error) => void;
+}): Runner
+```
+
+### Utilities
+
+#### MsgUtil
+
+Utility class for creating and checking message types.
+
+- `MsgUtil.system(content: string, opts?): Msg.System`
+- `MsgUtil.user(content: string, opts?): Msg.User`
+- `MsgUtil.assistant(content: string, opts?): Msg.Assistant`
+- `MsgUtil.funcCall(function_call: { name: string; arguments: string }, opts?): Msg.FuncCall`
+- `MsgUtil.funcResult(content: Jsonifiable, name: string): Msg.FuncResult`
+- `MsgUtil.toolCall(tool_calls: Msg.Call.Tool[], opts?): Msg.ToolCall`
+- `MsgUtil.toolResult(content: Jsonifiable, tool_call_id: string, opts?): Msg.ToolResult`
+
+#### Tokenizer
+
+Utility for encoding, decoding, and counting tokens for various models.
+
+- `createTokenizer(model: string): Tokenizer`
+
+#### Cache
+
+Utilities for caching model responses.
+
+- `type CacheStorage`
+- `type CacheKey, KeyType = string>`
+- `defaultCacheKey>(params: Params): string`
+
+## Advanced Topics
+
+### OpenAI Client (openai-fetch)
+
+Dexter uses the `openai-fetch` library to interact with the OpenAI API. This client is lightweight, well-typed, and provides a simple interface for making API calls. Here's how it's used in Dexter:
+
+1. **Default Client**: By default, Dexter creates an instance of `OpenAIClient` from `openai-fetch` when initializing models.
+
+2. **Custom Client**: You can provide your own instance of `OpenAIClient` when creating a model:
+
+ ```typescript
+ import { OpenAIClient } from 'openai-fetch';
+ import { ChatModel } from '@dexaai/dexter';
+
+ const client = new OpenAIClient({ apiKey: 'your-api-key' });
+ const chatModel = new ChatModel({ client });
+ ```
+
+3. **Client Caching**: Dexter implements caching for `OpenAIClient` instances to improve performance when creating multiple models with the same configuration.
+
+4. **Streaming Support**: The `openai-fetch` client supports streaming responses, which Dexter utilizes for real-time output in chat models.
+
+### Message Types and MsgUtil
+
+Dexter defines a set of message types (`Msg`) that closely align with the OpenAI API's message formats but with some enhancements for better type safety and easier handling. The `MsgUtil` class provides methods for creating, checking, and asserting these message types.
+
+#### Msg Types
+
+- `Msg.System`: System messages
+- `Msg.User`: User messages
+- `Msg.Assistant`: Assistant messages
+- `Msg.Refusal`: Refusal messages (thrown as errors in Dexter)
+- `Msg.FuncCall`: Function call messages
+- `Msg.FuncResult`: Function result messages
+- `Msg.ToolCall`: Tool call messages
+- `Msg.ToolResult`: Tool result messages
+
+These types are designed to be compatible with the `ChatMessage` type from `openai-fetch`, with some differences:
+
+- Dexter throws a `RefusalError` for refusal messages instead of including them in the `Msg` union.
+- The `content` property is always defined (string or null) in Dexter's types.
+
+#### MsgUtil Methods
+
+1. Creation Methods:
+ - `system`, `user`, `assistant`, `funcCall`, `funcResult`, `toolCall`, `toolResult`
+
+2. Type Checking Methods:
+ - `isSystem`, `isUser`, `isAssistant`, `isRefusal`, `isFuncCall`, `isFuncResult`, `isToolCall`, `isToolResult`
+
+3. Type Assertion Methods:
+ - `assertSystem`, `assertUser`, `assertAssistant`, `assertRefusal`, `assertFuncCall`, `assertFuncResult`, `assertToolCall`, `assertToolResult`
+
+4. Conversion Method:
+ - `fromChatMessage`: Converts an `openai-fetch` `ChatMessage` to a Dexter `Msg` type
+
+### Telemetry
+
+Dexter includes a telemetry system for tracking and logging model operations. The telemetry system is based on the OpenTelemetry standard and can be integrated with various observability platforms.
+
+1. **Default Telemetry**: By default, Dexter uses a no-op telemetry provider that doesn't perform any actual logging or tracing.
+
+2. **Custom Telemetry**: You can provide your own telemetry provider when initializing models. The provider should implement the `Telemetry.Provider` interface:
+
+ ```typescript
+ interface Provider {
+ startSpan(options: SpanOptions, callback: (span: Span) => T): T;
+ setTags(tags: { [key: string]: Primitive }): void;
+ }
+ ```
+
+3. **Span Attributes**: Dexter automatically adds various attributes to telemetry spans, including model type, provider, input tokens, output tokens, and more.
+
+4. **Usage**: Telemetry is used internally in the `AbstractModel` class to wrap the `run` method, providing insights into model execution.
+
+### Caching
+
+Dexter provides a flexible caching system to improve performance and reduce API calls:
+
+1. **Cache Interface**: The cache must implement the `CacheStorage` interface:
+
+ ```typescript
+ interface CacheStorage {
+ get: (key: KeyType) => Promise | ValueType | undefined;
+ set: (key: KeyType, value: ValueType) => Promise | unknown;
+ }
+ ```
+
+2. **Default Cache Key**: Dexter uses a default cache key function that creates a SHA512 hash of the input parameters.
+
+3. **Custom Cache**: You can provide your own cache implementation when initializing models:
+
+ ```typescript
+ import { ChatModel } from '@dexaai/dexter';
+
+ const customCache = new Map();
+ const chatModel = new ChatModel({ cache: customCache });
+ ```
+
+4. **Cache Usage**: Caching is automatically applied in the `AbstractModel` class. Before making an API call, it checks the cache for a stored response. After receiving a response, it stores it in the cache for future use.
+
+5. **Cache Invalidation**: Cache invalidation is left to the user. You can implement your own cache invalidation strategy based on your specific use case.
+
+### Tokenization
+
+Dexter includes a tokenization system based on the `tiktoken` library, which is used by OpenAI for their models. This system is crucial for accurately counting tokens and managing model inputs and outputs.
+
+1. **Tokenizer Creation**: The `createTokenizer` function creates a `Tokenizer` instance for a specific model:
+
+ ```typescript
+ const tokenizer = createTokenizer('gpt-3.5-turbo');
+ ```
+
+2. **Tokenizer Methods**:
+ - `encode(text: string): Uint32Array`: Encodes text to tokens
+ - `decode(tokens: number[] | Uint32Array): string`: Decodes tokens to text
+ - `countTokens(input?: string | ChatMessage | ChatMessage[]): number`: Counts tokens in various input formats
+ - `truncate({ text: string, max: number, from?: 'start' | 'end' }): string`: Truncates text to a maximum number of tokens
+
+3. **Model Integration**: Each model instance has its own `Tokenizer`, which is used internally for token counting and management.
+
+### Model Event Hooks
+
+Dexter provides a system of event hooks that allow you to add custom logic at various points in the model execution process. These hooks are defined in the `Model.Events` interface:
+
+1. **Available Hooks**:
+ - `onStart`: Called before the model execution starts
+ - `onApiResponse`: Called after receiving a response from the API
+ - `onComplete`: Called after the model execution is complete
+ - `onError`: Called if an error occurs during model execution
+
+2. **Hook Parameters**: Each hook receives an event object with relevant information, such as timestamps, model parameters, responses, and context.
+
+3. **Usage**: Event hooks can be defined when creating a model instance:
+
+ ```typescript
+ const chatModel = new ChatModel({
+ events: {
+ onStart: [(event) => console.log('Starting model execution', event)],
+ onComplete: [(event) => console.log('Model execution complete', event)],
+ },
+ });
+ ```
+
+4. **Multiple Handlers**: Each event can have multiple handlers, which are executed in the order they are defined.
+
+5. **Async Handlers**: Event handlers can be asynchronous functions. Dexter uses `Promise.allSettled` to handle multiple async handlers.
+
+6. **Extending Models**: When using the `extend` method to create a new model instance, event handlers are merged, allowing you to add new handlers without removing existing ones.
## License