-
Notifications
You must be signed in to change notification settings - Fork 2
/
cluster_cca_mod2.m
213 lines (187 loc) · 5.76 KB
/
cluster_cca_mod2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function [Wx,Wy,r] = cluster_cca_mod2(train_a,train_b,a_labels,b_labels,kapa_cca,knn,eta,option)
% select the number of nearest neighbours as knn
%% Get the center of each clusters in both the sets (MEAN CCA)
% disp('>Getting the center of each clusters....');
unq_a_label = unique(a_labels); %1x100
unq_b_label = unique(b_labels); %1x100
%% Calculating the cardinality of all the classes in both the sets
% disp('>Calculating the cardinality of all the classes in both the sets...');
card_a = zeros(1,size(unq_a_label,2)); %1x100
card_b = zeros(1,size(unq_b_label,2)); %1x100
for i=1:size(card_a,2)
c = 0; d = 0;
for j=1:size(a_labels,2)
if unq_a_label(i)==a_labels(j)
c = c + 1;
end
end
for j=1:size(b_labels,2)
if unq_b_label(i)==b_labels(j)
d = d + 1;
end
end
card_a(1,i) = c;
card_b(1,i) = d;
end
%% Calculate the value of the constant M
% disp('>calculating the value of M...');
M = 0;
for i=1:size(unq_a_label,2)
M = M + card_a(1,i)*card_b(1,i);
end
%% Calculating the covariance matrix Cxy
% disp('...calculating the covariance matrix Cxy....')
% 1st method
C = size(unq_a_label,2);
Cxy = 0;
for c=1:C %for each class
%find those vectors in set a having that label
[~,idx1]=find(a_labels==unq_a_label(c));
%find those vectors in set a having that label
[~,idx2]=find(b_labels==unq_b_label(c));
for j=1:length(idx1)
x = train_a(:,idx1(j));
for k=1:length(idx2)
y = train_b(:,idx2(k));
Cxy = Cxy + x*y.';
end
end
end
%% 2nd method
% Reordering the matrix
train_a = train_a.';
train_b = train_b.';
% initialization the matrix
train_a_mean = zeros(length(unq_a_label),size(train_a,2));
train_b_mean = zeros(length(unq_b_label),size(train_b,2));
% calculating the means of the clusters
for i=1:length(unq_a_label)
sum = 0; count = 0;
[~,idx]=find(a_labels==unq_a_label(i));
for j=1:length(idx)
sum = sum + train_a(idx(j),:);
count = count + 1;
end
train_a_mean(i,:) = sum/count;
end
for i=1:length(unq_b_label)
sum = 0; count = 0;
[~,idx]=find(b_labels==unq_b_label(i));
for j=1:length(idx)
sum = sum + train_b(idx(j),:);
count = count + 1;
end
train_b_mean(i,:) = sum/count;
end
% Reordering the matrix
train_a = train_a.';
train_b = train_b.';
%% Calcualting the k-nearest neighbours for each class
score_mean_a = pdist2(train_a_mean,train_a_mean,'cosine');
score_mean_b = pdist2(train_b_mean,train_b_mean,'cosine');
for k=1:size(score_mean_a,1)
finalScore = score_mean_a(k,:);
[~,sortIndex] = sort(finalScore);
knn_index_a(k,:) = sortIndex';
end
for k=1:size(score_mean_b,1)
finalScore = score_mean_b(k,:);
[~,sortIndex] = sort(finalScore);
knn_index_b(k,:) = sortIndex';
end
train_a_mean = train_a_mean.';
train_b_mean = train_b_mean.';
%% Calculating the covariance matrix Cxx
% n = number of classes
% card = cardinality of the classes in each set
% disp('...calculating the covariance matrix Cxx....')
C = size(unq_a_label,2);
Cxx = 0;
for c=1:C %for each class
%find those vectors having that label
[~,idx]=find(a_labels==unq_a_label(c));
zz = train_a_mean(:,knn_index_a(c,:));
zz = zz(:,2:knn+1);
sum2 = zz*zz.';
if option==0
sum2 = 0;
end
sum = 0;
for j=1:length(idx)
x = train_a(:,idx(j));
sum = sum + x*x.';
end
sum = card_b(1,c)*(sum + sum2 * card_a(1,c));
Cxx = Cxx + sum;
end
Cxx = Cxx./M;
Cxx = Cxx + kapa_cca*eye(size(train_a,1));
%% Calculating the covariance matrix Cyy
% disp('...calculating the covariance matrix Cyy....')
C = size(unq_a_label,2);
Cyy = 0;
for c=1:C %for each class
%find those vectors having that label
[~,idx]=find(b_labels==unq_b_label(c));
sum = 0;
zz = train_b_mean(:,knn_index_b(c,:));
zz = zz(:,2:knn+1);
sum2 = zz*zz.';
if option==0
sum2 = 0;
end
for j=1:length(idx)
y = train_b(:,idx(j));
sum = sum + y*y.';
end
sum = card_a(1,c)*(sum + sum2 * card_b(1,c));
Cyy = Cyy + sum;
end
Cyy = Cyy./M + kapa_cca*eye(size(train_b,1));
% 3rd modifications
% Adding the new cross covariance matrix
% disp('...Adding the new cross covariance matrix');
Cb = 0;
for c=1:C
[~,idx] = sort(score_mean_a(c,:));
zz1 = train_a_mean(:,idx);
zz1_labels = unq_a_label(idx);
% get the closest labels of the different class
[~,idx1] = find(zz1_labels~=unq_a_label(c));
idx1 = idx1(1:knn);
zz1dc = zz1(:,idx1);
[~,idx] = sort(score_mean_b(c,:));
zz2 = train_b_mean(:,idx);
zz2_labels = unq_b_label(idx);
% get the closest labels of the different class
[~,idx2] = find(zz2_labels~=unq_b_label(c));
idx2 = idx2(1:knn);
zz2dc = zz2(:,idx2);
sum2 = 0; sum3 = 0;
xj = train_a_mean(:,c);
yj = train_b_mean(:,c);
for p=1:min(size(zz1dc,2),size(zz2dc,2))
xp = zz1dc(:,p);
yp = zz2dc(:,p);
sum2 = sum2 + xj*yp.';
sum3 = sum3 + xp*yj.';
end
Cb = Cb + sum2 + sum3;
end
Cxy_bar = -eta*Cb;
Cxy = Cxy + Cxy_bar;
Cxy = Cxy./M;
Cyx = Cxy.';
% disp('...calculating the projection matrices....')
%% Calculating the Wx cca matrix
Rx = chol(Cxx);
inv_Rx = inv(Rx);
Z = inv_Rx'*Cxy*(Cyy\Cyx)*inv_Rx;
Z = 0.5*(Z' + Z); % making sure that Z is a symmetric matrix
[Wx,r] = eig(Z); % basis in h (X)
r = sqrt(real(r)); % as the original r we get is lamda^2
Wx = inv_Rx * Wx; % actual Wx values
%% Calculating Wy
Wy = (Cyy\Cyx) * Wx;
% by dividing it by lamda
Wy = Wy./repmat(diag(r)',size(train_b,1),1);