Focal Self-attention for Local-Global Interactions in Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for Focal Transformer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update(2021-10-21): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
Focal-T | 82.03 | 95.86 | 28.9M | 4.9G | 224 | 0.875 | bicubic | google/baidu(i8c2) |
Focal-T (use conv) | 82.70 | 96.14 | 30.8M | 4.9G | 224 | 0.875 | bicubic | google/baidu(smrk) |
Focal-S | 83.55 | 96.29 | 51.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu(dwd8) |
Focal-S (use conv) | 83.85 | 96.47 | 53.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu(nr7n) |
Focal-B | 83.98 | 96.48 | 89.8M | 16.4G | 224 | 0.875 | bicubic | google/baidu(8akn) |
Focal-B (use conv) | 84.18 | 96.61 | 93.3M | 16.4G | 224 | 0.875 | bicubic | google/baidu(5nfi) |
*The results are evaluated on ImageNet2012 validation set.
(coming soon)
We provide a few notebooks in aistudio to help you get started:
(coming soon)
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset
is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./focal_tiny_patch4_window7_224.pdparams
, to use the focal_tiny_patch4_window7_224
model in python:
from config import get_config
from focal_transformer import build_focal as build_model
# config files in ./configs/
config = get_config('./configs/focal_tiny_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./focal_tiny_patch4_window7_224.pdparams')
model.set_dict(model_state_dict)
To evaluate Focal Transformer
model performance on ImageNet2012 with a single GPU
, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/focal_tiny_patch4_window7_224.yaml \
-dataset=imagenet2012 \
-num_classes=1000 \
-batch_size=64 \
-image_size=224 \
-data_path=/path/to/dataset/imagenet/val \
-eval \
-pretrained=/path/to/pretrained/model/focal_tiny_patch4_window7_224 # .pdparams is NOT needed
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg=./configs/focal_tiny_patch4_window7_224.yaml \
-dataset=imagenet2012 \
-num_classes=1000 \
-batch_size=32 \
-image_size=224 \
-data_path=/path/to/dataset/imagenet/val \
-eval \
-pretrained=/path/to/pretrained/model/focal_tiny_patch4_window7_224 # .pdparams is NOT needed
To train the Focal Transformer
model on ImageNet2012 with single GPU
, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/focal_tiny_patch4_window7_224.yaml \
-dataset=imagenet2012 \
-num_classes=1000 \
-batch_size=32 \
-image_size=224 \
-data_path=/path/to/dataset/imagenet/train \
-output=./output
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_single_gpu.py \
-cfg=./configs/focal_tiny_patch4_window7_224.yaml \
-dataset=imagenet2012 \
-num_classes=1000 \
-batch_size=4 \
-image_size=224 \
-data_path=/path/to/dataset/imagenet/train \
-output=./output
-cfg
: path of model config file (.yaml), stored in./configs
.-dataset
: dataset name, e.g.,imagenet2012
,cifar10
,cifar100
.-data_path
: dataset folder path-batch_size
: batch size,default:32
.-image_size
: input image size,default224
.-num_classes
: number of classes, default:1000
.-output
: output folder for storing weights and logs,default:./output
.-pretrained
: pretrain model weights file path, (.pdparams
file ext is NOT needed) default:None
.-resume
: resume model weight and opt file path, (.paparams
and.pdopts
file ext are NOT needed, default:None
.-last_epoch
: start epoch,default:None
.-save_freq
: number of epochs to save checkpoint,default:1
.-log_freq
: number of iters to print logging,default:100
.-validate_freq
: number of epochs to do validation during training,default:10
.-accum_iter
: number of iteration for iter accumulation, default: 1.-num_workers
: number of workers for data loading,default:1
.-ngpus
: number of GPUs to use,you can control GPUs by CUDA_VISIBLE_DEVICES, just set this to -1 default:-1
.-eval
: start eval mode.-amp
: start amp training.
-cfg
,-dataset
and-data_path
inmain_single_gpu.py
andmain_multi_gpu.py
are MUST-HAVE settings.
(coming soon)
@misc{yang2021focal,
title={Focal Self-attention for Local-Global Interactions in Vision Transformers},
author={Jianwei Yang and Chunyuan Li and Pengchuan Zhang and Xiyang Dai and Bin Xiao and Lu Yuan and Jianfeng Gao},
year={2021},
eprint={2107.00641},
archivePrefix={arXiv},
primaryClass={cs.CV}
}