CvT: Introducing Convolutions to Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for CvT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-12-24): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
CvT-13-224 | 81.59 | 95.67 | 20M | 4.5G | 224 | 0.875 | bicubic | google/baidu(vev9) |
CvT-21-224 | 82.46 | 96.00 | 32M | 7.1G | 224 | 0.875 | bicubic | google/baidu(t2rv) |
CvT-13-384 | 83.00 | 96.36 | 20M | 16.3G | 384 | 1.0 | bicubic | google/baidu(wswt) |
CvT-21-384 | 83.27 | 96.16 | 32M | 24.9G | 384 | 1.0 | bicubic | google/baidu(hcem) |
CvT-13-384-22k | 83.26 | 97.09 | 20M | 16.3G | 384 | 1.0 | bicubic | google/baidu(c7m9) |
CvT-21-384-22k | 84.91 | 97.62 | 32M | 24.9G | 384 | 1.0 | bicubic | google/baidu(9jxe) |
CvT-w24-384-22k | 87.58 | 98.47 | 277M | 193.2G | 384 | 1.0 | bicubic | google/baidu(bbj2) |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./CvT-13-224x224-IN-1k.pdparams
, to use the CvT-13-224x224-IN-1k
model in python:
from config import get_config
from cvt import build_cvt as build_model
# config files in ./configs/
config = get_config('./configs/cvt-13-224x224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./CvT-13-224x224-IN-1k')
model.set_dict(model_state_dict)
To evaluate CvT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./CvT-13-224x224-IN-1k'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./CvT-13-224x224-IN-1k'
To train the CvT Transformer model on ImageNet2012 with single GPUs, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{wu2021cvt,
title={CvT: Introducing Convolutions to Vision Transformers},
author={Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang},
journal={arXiv preprint arXiv:2103.15808},
year={2021}
}