Bottleneck Transformers for Visual Recognition, arxiv
PaddlePaddle training/validation code and pretrained models for BoTNet.
The official pytorch implementation is N/A. The 3rd party timm pytorch implementation is here
This implementation is developed by PaddleViT.
- Update (2021-12-22): Initial code and ported weights are released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
botnet50 | 77.38 | 93.56 | 20.9M | 5.3G | 224 | 0.875 | bicubic | google/baidu(wh13) |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./botnet50.pdparams
, to use the botnet50
model in python:
from config import get_config
from botnet import build_botnet50
# config files in ./configs/
config = get_config('./configs/botnet50.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./botnet50')
model.set_dict(model_state_dict)
To evaluate botnet50 model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/botnet50.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./botnet50'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/botnet50.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./botnet50'
To train the botnet50 model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_singel_gpu.py \
-cfg='./configs/botnet50.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/botnet50.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@inproceedings{srinivas2021bottleneck,
title={Bottleneck transformers for visual recognition},
author={Srinivas, Aravind and Lin, Tsung-Yi and Parmar, Niki and Shlens, Jonathon and Abbeel, Pieter and Vaswani, Ashish},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16519--16529},
year={2021}
}