Skip to content

Latest commit

 

History

History
 
 

BoTNet

Bottleneck Transformers for Visual Recognition, arxiv

PaddlePaddle training/validation code and pretrained models for BoTNet.

The official pytorch implementation is N/A. The 3rd party timm pytorch implementation is here

This implementation is developed by PaddleViT.

drawing

BotNet architecture

Update

  • Update (2021-12-22): Initial code and ported weights are released.

Models Zoo

Model Acc@1 Acc@5 #Params FLOPs Image Size Crop_pct Interpolation Link
botnet50 77.38 93.56 20.9M 5.3G 224 0.875 bicubic google/baidu(wh13)

*The results are evaluated on ImageNet2012 validation set.

Notebooks

We provide a few notebooks in aistudio to help you get started:

*(coming soon)*

Requirements

Data

ImageNet2012 dataset is used in the following folder structure:

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Usage

To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/.

For example, assume the downloaded weight file is stored in ./botnet50.pdparams, to use the botnet50 model in python:

from config import get_config
from botnet import build_botnet50 
# config files in ./configs/
config = get_config('./configs/botnet50.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./botnet50')
model.set_dict(model_state_dict)

Evaluation

To evaluate botnet50 model performance on ImageNet2012 with a single GPU, run the following script using command line:

sh run_eval.sh

or

CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
    -cfg='./configs/botnet50.yaml' \
    -dataset='imagenet2012' \
    -batch_size=16 \
    -data_path='/dataset/imagenet' \
    -eval \
    -pretrained='./botnet50'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
    -cfg='./configs/botnet50.yaml' \
    -dataset='imagenet2012' \
    -batch_size=16 \
    -data_path='/dataset/imagenet' \
    -eval \
    -pretrained='./botnet50'

Training

To train the botnet50 model on ImageNet2012 with single GPU, run the following script using command line:

sh run_train.sh

or

CUDA_VISIBLE_DEVICES=0 \
python main_singel_gpu.py \
  -cfg='./configs/botnet50.yaml' \
  -dataset='imagenet2012' \
  -batch_size=32 \
  -data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
    -cfg='./configs/botnet50.yaml' \
    -dataset='imagenet2012' \
    -batch_size=16 \
    -data_path='/dataset/imagenet' \

Visualization Attention Map

(coming soon)

Reference

@inproceedings{srinivas2021bottleneck,
  title={Bottleneck transformers for visual recognition},
  author={Srinivas, Aravind and Lin, Tsung-Yi and Parmar, Niki and Shlens, Jonathon and Abbeel, Pieter and Vaswani, Ashish},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={16519--16529},
  year={2021}
}