-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrefs.bib
342 lines (284 loc) · 10.1 KB
/
refs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
%% Graph NNs
@inproceedings{defferrard2016convolutional,
title={Convolutional neural networks on graphs with fast localized spectral filtering},
author={Defferrard, Micha{\"e}l and Bresson, Xavier and Vandergheynst, Pierre},
booktitle={Advances in Neural Information Processing Systems},
pages={3844--3852},
year={2016}
}
@article{bronstein2017review,
title={Geometric deep learning: going beyond euclidean data},
author={Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre},
journal={IEEE Signal Processing Magazine},
volume={34},
number={4},
pages={18--42},
year={2017},
publisher={IEEE}
}
%% Spherical CNNs
@article{perraudin2018deepsphere,
title = {DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications},
author = {Perraudin, Nathana\"el and Defferrard, Micha\"el and Kacprzak, Tomasz and Sgier, Raphael},
journal = {Astronomy and Computing},
volume = {27},
pages = {130 - 146},
year = {2019},
issn = {2213-1337},
doi = {10.1016/j.ascom.2019.03.004},
archivePrefix = {arXiv},
eprint = {1810.12186},
url = {https://arxiv.org/abs/1810.12186},
}
@inproceedings{khasanova2017graphomni,
author={P. Frossard and R. Khasanova},
booktitle={2017 IEEE International Conference on Computer Vision Workshops (ICCVW)},
title={Graph-Based Classification of Omnidirectional Images},
year={2017},
volume={},
number={},
pages={860-869},
ISSN={},
month={Oct},
}
@article{cohen2018sphericalcnn,
title={Spherical CNNs},
author={Cohen, Taco S and Geiger, Mario and Koehler, Jonas and Welling, Max},
journal={arXiv:1801.10130},
archivePrefix = "arxiv",
year={2018}
}
@article{kondor2018sphericalcnn,
title={Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network},
author={Kondor, Risi and Lin, Zhen and Trivedi, Shubhendu},
journal={arXiv:1806.09231},
archivePrefix = "arxiv",
year={2018}
}
@article{esteves2017sphericalcnn,
title={Learning SO(3) Equivariant Representations with Spherical CNNs},
author={Esteves, Carlos and Allen-Blanchette, Christine and Makadia, Ameesh and Daniilidis, Kostas},
journal={arXiv:1711.06721},
archivePrefix = "arxiv",
year={2017}
}
@inproceedings{boomsma2017sphericalcnn,
title={Spherical convolutions and their application in molecular modelling},
author={Boomsma, Wouter and Frellsen, Jes},
booktitle={Advances in Neural Information Processing Systems},
pages={3436--3446},
year={2017}
}
@inproceedings{su2017sphericalcnn,
title={Learning spherical convolution for fast features from 360 imagery},
author={Su, Yu-Chuan and Grauman, Kristen},
booktitle={Advances in Neural Information Processing Systems},
pages={529--539},
year={2017}
}
@inproceedings{coors2018sphericalcnn,
author = {Benjamin Coors and Alexandru Paul Condurache and Andreas Geiger},
title = {SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images},
booktitle = {European Conference on Computer Vision},
year = {2018}
}
@article{jiang2019sphericalcnn,
title={Spherical CNNs on Unstructured Grids},
author={Jiang, Chiyu and Huang, Jingwei and Kashinath, Karthik and Marcus, Philip and Niessner, Matthias and others},
journal={arXiv preprint arXiv:1901.02039},
year={2019}
}
@article{krachmalnicoff2019convolutional,
title={Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis},
author={Krachmalnicoff, Nicoletta and Tomasi, Maurizio},
journal={arXiv preprint arXiv:1902.04083},
year={2019}
}
%% Sphere pixelizations
@article{gorski2005healpix,
title={HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere},
author={Gorski, Krzysztof M and Hivon, Eric and Banday, AJ and Wandelt, Benjamin D and Hansen, Frode K and Reinecke, Mstvos and Bartelmann, Matthia},
journal={The Astrophysical Journal},
volume={622},
number={2},
pages={759},
year={2005},
publisher={IOP Publishing}
}
@article{glesp,
title={Gauss--Legendre sky pixelization (GLESP) for CMB maps},
author={Doroshkevich, AG and Naselsky, PD and Verkhodanov, Oleg V and Novikov, DI and Turchaninov, VI and Novikov, ID and Christensen, PR and Chiang, L-Y},
journal={International Journal of Modern Physics D},
volume={14},
number={02},
pages={275--290},
year={2005},
publisher={World Scientific}
}
@article{sympix,
title={Sympix: A spherical grid for efficient sampling of rotationally invariant operators},
author={Seljebotn, Dag Sverre and Eriksen, Hans Kristian},
journal={The Astrophysical Journal Supplement Series},
volume={222},
number={2},
pages={17},
year={2016},
publisher={IOP Publishing}
}
@article{cubedsphere,
title={The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry},
author={Ronchi, C and Iacono, R and Paolucci, Pier S},
journal={Journal of Computational Physics},
volume={124},
number={1},
pages={93--114},
year={1996},
publisher={Elsevier}
}
%% Equivariance
@inproceedings{cohen2016equivariance,
title={Group equivariant convolutional networks},
author={Cohen, Taco and Welling, Max},
booktitle={International conference on machine learning},
pages={2990--2999},
year={2016}
}
@article{kondor2018equivariance,
title={On the generalization of equivariance and convolution in neural networks to the action of compact groups},
author={Kondor, Risi and Trivedi, Shubhendu},
journal={arXiv:1802.03690},
archivePrefix = "arxiv",
year={2018}
}
%% Graphs as sampled manifolds
@inproceedings{taubin1996meshsmoothing,
title={Optimal surface smoothing as filter design},
author={Taubin, Gabriel and Zhang, Tong and Golub, Gene},
booktitle={European Conference on Computer Vision},
pages={283--292},
year={1996},
organization={Springer}
}
@article{belkin2003laplacian,
title={Laplacian eigenmaps for dimensionality reduction and data representation},
author={Belkin, Mikhail and Niyogi, Partha},
journal={Neural computation},
volume={15},
number={6},
pages={1373--1396},
year={2003},
publisher={MIT Press}
}
@article{shuman2013gsp,
title={The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains},
author={Shuman, David I and Narang, Sunil K and Frossard, Pascal and Ortega, Antonio and Vandergheynst, Pierre},
journal={IEEE Signal Processing Magazine},
volume={30},
number={3},
pages={83--98},
year={2013},
publisher={IEEE}
}
@article{hammond2011wavelets,
title={Wavelets on graphs via spectral graph theory},
author={Hammond, David K and Vandergheynst, Pierre and Gribonval, R{\'e}mi},
journal={Applied and Computational Harmonic Analysis},
volume={30},
number={2},
pages={129--150},
year={2011},
publisher={Elsevier}
}
%% Convergence
@inproceedings{belkin2005towards,
title={Towards a theoretical foundation for Laplacian-based manifold methods},
author={Belkin, Mikhail and Niyogi, Partha},
booktitle={International Conference on Computational Learning Theory},
pages={486--500},
year={2005},
organization={Springer}
}
@inproceedings{belkin2007convergence,
title={Convergence of Laplacian eigenmaps},
author={Belkin, Mikhail and Niyogi, Partha},
booktitle={Advances in Neural Information Processing Systems},
pages={129--136},
year={2007}
}
@article{von2008consistency,
title={Consistency of spectral clustering},
author={Von Luxburg, Ulrike and Belkin, Mikhail and Bousquet, Olivier},
journal={The Annals of Statistics},
pages={555--586},
year={2008},
publisher={JSTOR}
}
@article{strang1999dct,
title={The discrete cosine transform},
author={Strang, Gilbert},
journal={SIAM review},
volume={41},
number={1},
pages={135--147},
year={1999},
publisher={SIAM}
}
@article{perraudin2017stationary,
title={Stationary signal processing on graphs},
author={Perraudin, Nathana{\"e}l and Vandergheynst, Pierre},
journal={IEEE Transactions on Signal Processing},
volume={65},
number={13},
pages={3462--3477},
year={2017},
publisher={IEEE}
}
%% Data
@ARTICLE{planck2015overview,
author = {{Planck Collaboration}},
title = "{Planck 2015 results. I. Overview of products and scientific results}",
journal = {Astronomy \& Astrophysics},
archivePrefix = "arxiv",
keywords = {cosmology: observations, cosmic background radiation, surveys, space vehicles: instruments, instrumentation: detectors},
year = 2016,
month = sep,
volume = 594,
eid = {A1},
pages = {A1},
adsurl = {http://adsabs.harvard.edu/abs/2016A%26A...594A...1P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
%% Software
@misc{pygsp,
title = {PyGSP: Graph Signal Processing in Python},
author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el},
doi = {10.5281/zenodo.1003157},
url = {https://github.com/epfl-lts2/pygsp/},
}
%% Other
@ARTICLE{patton2017cosmologicalconstraints,
author = {{Patton}, K. and {Blazek}, J. and {Honscheid}, K. and {Huff}, E. and
{Melchior}, P. and {Ross}, A.~J. and {Suchyta}, E.},
title = "{Cosmological constraints from the convergence 1-point probability distribution}",
journal = {Monthly Notices of the Royal Astronomical Society},
archivePrefix = "arxiv",
keywords = {gravitational lensing: weak, cosmological parameters, large-scale structure of Universe, cosmology: observations},
year = 2017,
month = nov,
volume = 472,
pages = {439-446},
adsurl = {http://adsabs.harvard.edu/abs/2017MNRAS.472..439P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{sgier2018fastgeneration,
author = {{Sgier}, R. and {R{\'e}fr{\'e}gier}, A. and {Amara}, A. and
{Nicola}, A.},
title = "{Fast Generation of Covariance Matrices for Weak Lensing}",
journal = {arxiv:1801.05745},
archivePrefix = "arxiv",
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics},
year = 2018,
month = jan,
adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180105745S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}